Harran University DSpace

A MACHINE LEARNING CLASSIFICATION APPROACH FOR DIABETES AND BIOMEDICAL DATA

Show simple item record

dc.contributor.author ZEBARI, Sarbast Chalo Hashim
dc.date.accessioned 2023-06-15T11:40:47Z
dc.date.available 2023-06-15T11:40:47Z
dc.date.issued 2023
dc.identifier.uri http://hdl.handle.net/11513/3143
dc.description.abstract Dünyada her türlü yaş ve farklı sosyoekonomik seviyede olan insanlara, daha önce hiç olmadığı kadar yüksek oranda diyabet tip 2 teşhisi konulmaktadır. Diyabet; körlük, böbrek ve kalp hastalığı gibi birçok önemli hastalığın ciddi bir kök sebebi olarak görülmektedir. Bu sebeple, eldeki tıbbi veriye dayalı olarak diyabet hastalığını güvenilir bir şekilde tespit edebilen teşhis sistemlerinin oluşturulması oldukça büyük önem taşımaktadır. Bu tezde; diyabet, kalp-c, kalp-h, hint-karaciğer, vertebral-kolon-2c, vertebral-kolon3c, parkinson ve tiroid biyomedikal veri kümelerinin sınıflandırılması için metot-tabanlı makine öğrenmesi yöntemleri önerildi. Önerilen yöntem; veri önişleme, öznitelik seçimi ve sınıflandırma gibi birkaç aşamadan oluşmaktadır. Bu çalışma, sonraki aşamalarda kullanılan veri setini iyileştirmek için daha çok önişleme aşamasına odaklanmaktadır. Bahsedilen önişleme aşamalarında; ilk olarak veri temizleme yapılarak, eksik değerler, ortalama değerler ile tamamlanmaktadır. Daha sonra, Dara metodu ile veri yeniden örneklemesi gerçekleştirilmekte ve arkasından veri normalizasyonu uygulanmaktadır. En son olarak ise öznitelik seçimi için Temel Bileşen Analizi (TBA) kullanılmaktadır. Önişlemeden sonra sınıflandırma için 4 farklı yöntem; J48, KNN, RF ve DT kullanılmaktadır. Başarıların değerlendirilmesi için 10 katlamalı çapraz doğrulama yöntemi kullanılarak sonuçlar elde edilmektedir. Bu şekilde, RF algoritması ile PIMA diyabet veri kümesi için %97,8 doğruluk, duyarlılık ve kesinlik sonuçları elde edilmiştir. Elde edilen sonuçlara dayanarak önerilen yöntemin, diyabet hastalığını yüksek doğrulukla sınıflayabilen, etkili ve verimli bir makine öğrenme sisteminin geliştirilmesi için kullanılabileceğini göstermektedir. Biyomedikal veri kümeleri üzerinde yapılan sonraki deneysel çalışmalarda önerilen yöntemin performansı sınanmakta ve parkinson veri kümesi için %99 doğruluk, duyarlılık ve kesinlik sonuçlarının elde edildiği görülmektedir. en_US
dc.language.iso tr en_US
dc.subject Biyomedikal veri seti, Diyabet, Makine öğrenimi, Sınıflandırma. en_US
dc.title A MACHINE LEARNING CLASSIFICATION APPROACH FOR DIABETES AND BIOMEDICAL DATA en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account