| dc.contributor.author | Şengül, Hacer | |
| dc.contributor.author | Et, Mikail | |
| dc.date.accessioned | 2019-06-12T10:20:07Z | |
| dc.date.available | 2019-06-12T10:20:07Z | |
| dc.date.issued | 2017 | |
| dc.identifier.issn | 1686-0209 | |
| dc.identifier.uri | http://hdl.handle.net/11513/198 | |
| dc.description.abstract | : In this paper, we define the generalized Ces`aro difference sequence space C(p)(∆m) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C(p)(∆m) every weakly convergent sequence on the unit sphere converges is the norm, where p = (pn) is a bounded sequence of positive real numbers with pn > 1 for all n ∈ N | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Thai Journal of Mathematics (Thai) | en_US |
| dc.subject | Ces`aro difference sequence space; Luxemburg norm; extreme point; convex modular; property (H). | en_US |
| dc.title | Some Geometric Properties of Generalized Difference Ces`aro Sequence Spaces | en_US |
| dc.type | Article | en_US |