Harran University DSpace

Some Geometric Properties of Generalized Difference Ces`aro Sequence Spaces

Show simple item record

dc.contributor.author Şengül, Hacer
dc.contributor.author Et, Mikail
dc.date.accessioned 2019-06-12T10:20:07Z
dc.date.available 2019-06-12T10:20:07Z
dc.date.issued 2017
dc.identifier.issn 1686-0209
dc.identifier.uri http://hdl.handle.net/11513/198
dc.description.abstract : In this paper, we define the generalized Ces`aro difference sequence space C(p)(∆m) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C(p)(∆m) every weakly convergent sequence on the unit sphere converges is the norm, where p = (pn) is a bounded sequence of positive real numbers with pn > 1 for all n ∈ N en_US
dc.language.iso en en_US
dc.publisher Thai Journal of Mathematics (Thai) en_US
dc.subject Ces`aro difference sequence space; Luxemburg norm; extreme point; convex modular; property (H). en_US
dc.title Some Geometric Properties of Generalized Difference Ces`aro Sequence Spaces en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account