dc.contributor.author |
Şengül, Hacer |
|
dc.contributor.author |
Et, Mikail |
|
dc.date.accessioned |
2019-06-12T10:20:07Z |
|
dc.date.available |
2019-06-12T10:20:07Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
1686-0209 |
|
dc.identifier.uri |
http://hdl.handle.net/11513/198 |
|
dc.description.abstract |
: In this paper, we define the generalized Ces`aro difference sequence
space C(p)(∆m) and consider it equipped with the Luxemburg norm under which it
is a Banach space and we show that in the space C(p)(∆m) every weakly convergent
sequence on the unit sphere converges is the norm, where p = (pn) is a bounded
sequence of positive real numbers with pn > 1 for all n ∈ N |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Thai Journal of Mathematics (Thai) |
en_US |
dc.subject |
Ces`aro difference sequence space; Luxemburg norm; extreme point; convex modular; property (H). |
en_US |
dc.title |
Some Geometric Properties of Generalized Difference Ces`aro Sequence Spaces |
en_US |
dc.type |
Article |
en_US |