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Abstract The performance of fluidized bed reactors

treating synthetic acid mine drainage were predicted using

an artificial neural network (ANN). The developed model

gave satisfactory fits to the experimentally obtained sulfate,

COD, alkalinity, and sulfide data; R-values were within

0.92 and 0.98. ANN can be effectively used to predict the

performance of these complex systems and, with the pro-

posed model-based applications, it is possible to reduce

operational costs and risks.
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Introduction

Artificial neural networks (ANNs) are a computational

approach inspired by studies of the brain and nervous

systems. The powerful functionality of biological neural

systems has been attributed to the parallel distributed

processing nature of neurons. An ANN emulates this

structure by distributing computations to small and simple

processing units, called artificial neurons, which are inter-

connected to form a network. Basically, ANNs are

numerical structures inspired by the learning process in the

human brain (Hamidi and Kayaalp 2008).

Researchers have established that anaerobic sulfate

reducing fluidized bed reactors (FBRs) could be used to

efficiently treat acidic mine drainage (AMD), assuming

high biomass retention and dilution of the feed water with

the recycling flow (Nevatalo et al. 2010; Sahinkaya et al.

2011; Sahinkaya and Gungor 2010). Biological processes

taking place in a wastewater treatment plants are complex

and not easily described by mechanistic models. The per-

formance of aspects such as wastewater composition and

operational parameters of the reactor and microbial com-

munity is very difficult to predict (Sahinkaya et al. 2007).

ANNs can be used to provide information on process

performance, either replacing a hardware sensor or com-

plementing it (Aguadoa et al. 2009). When circumstances

or processes are not understood well enough or parameter

determination is impractical, there is a distinctive advan-

tage for black-box models, like ANNs, since they do not

require prior knowledge about the structure and relation-

ships that exist between important variables. Moreover,

their learning abilities make them adaptive to system

changes (Sahinkaya 2009; Sahinkaya et al. 2007). ANN

models have already been used to predict the performance

of wastewater treatment plants (Mjalli et al. 2007), to

simulate an industrial wastewater treatment plant (Gon-

tarski et al. 2000), to model a submerged membrane bio-

reactor treating whey wastewater (Cinar et al. 2006), to

assess wastewater reclamation potential (Chen et al. 2003),

and to model biological water and wastewater treatment

processes (Khataee and Kasiri 2011).

We modeled the performance of upflow and downflow

FBRs using a popular neural network back-propagation

(BP) algorithm in an attempt to predict reactor performance

without using effluent parameters as input to determine if
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we could adequately predict reactor performance at dif-

ferent operational conditions without conducting

experiments.

Materials and Methods

Fluidized Bed Reactors (FBRs)

The influent and effluent parameters of a laboratory-scale

upflow fluidized bed reactor (UFBR) and two downflow

fluidized bed reactors (DFBRs) inoculated with anaerobic

digester effluent of a municipal wastewater treatment plant

was used in this study. The methods for analyzing sulfate,

soluble metal, sulfide, pH and alkalinity were described in

Sahinkaya and Gungor (2010). The FBRs were maintained

in a temperature controlled room at 35 �C. Zeolite particles

(particle size 0.5–1.0 mm) were used as the biomass carrier

for the UFBR (R1). The fluidization ratio in the UFBR was

adjusted to 15–20 % with a high recycling rate, resulting in

active fluidized bed volume of around 300 mL. Cubic

sponge particles (for R2) and polyurethane material (for

R3) with an average size of around 0.5 and 5 mm,

respectively were the carrier materials for the DFBRs. The

FBRs were fed with synthetic wastewater containing

nutrients and varying concentrations of lactate and sulfate.

Lactate was used as a carbon and electron source for the

SRB. The ratio of lactate/sulfate (as COD/sulfate) was

0.67–1.0 for the UFBR and 0.67–1.25 for the DFBs. The

feed solution, freshly prepared every day, was kept in a

refrigerator at 4 �C. COD removal, Cu and Zn

precipitation, and sulfate reduction was not observed in the

feed container. The procedure given by Sahinkaya and

Gungor (2010) was followed for the operational conditions

of the FBRs.

Modeling

The procedure given by Sahinkaya (2009) was followed in

the ANN modeling of FBRs. A feed-forward ANN, trained

with a BP algorithm, was implemented using the MAT-

LAB� 7.6.0 computer program. ANN algorithms attempt to

mimic neurological performance, such as learning from past

experience, making generalizations from similar situations,

Fig. 1 ANN structure for

prediction of reactor effluent

parameters for scenario 1

(effluent pH was removed from

the input parameters in

scenario 2)

Table 1 Input and output parameters in the modeling of the perfor-

mance of FBRs for scenarios 1 and 2

Scenario 1 Scenario 2

Input parameters [P]

[P1] Feed pH Feed pH

[P2] Effluent pH Feed sulfate (mg/L)

[P3] Feed sulfate (mg/L) Feed metal (mg/L)

[P4] Feed metal (mg/L) Feed COD (mg/L)

[P5] Feed COD (mg/L) Operation time (day)

[P6] Operation time (day)

Output parameters [T]

[T1] Effluent sulfate (mg/L) Effluent sulfate (mg/L)

[T2] Effluent COD (mg/L) Effluent COD (mg/L)

[T3] Effluent alkalinity (mg CaCO3/L) Effluent alkalinity

(mg CaCO3/L)

[T4] Effluent sulfide (mg/L) Effluent sulfide (mg/L)
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and producing decisions with incomplete knowledge, which

involves great complexities and nonlinearities (Onkal-Engin

et al. 2005). The BP neural network developed by Rumelhart

et al. (1986) is the most representative ANN learning model.

A feed-forward ANN consist of interconnected processing

elements, called neurons, which are arranged in layers: an

input layer, one or more hidden layers, and an output layer.

Every unit contains a number of neurons, and these units are

related to each other by weighted connections (Hamidi and

Kayaalp 2008). Input for the network is normalized, and this

normalized input data is randomly divided for training and

validation (Purkait et al. 2009). BP algorithms use input

vectors and corresponding target vectors to train ANN. ANN

with a sigmoid and linear output layer are capable of

approximating any function with a finite number of dis-

continuities (Ozkaya et al. 2008).

Table 2 Comparison of BP algorithms for predicting effluent sulfate, COD, alkalinity and sulfide of reactor 1, reactor 2, and reactor 3 (neuron

number 20)

Sulfate (mg/L) COD (mg/L) Alkalinity (mg CaCO3/L) Sulfide (mg/L)

*T-R V-R Tt-R A-R T-R V-R Tt-R A-R T-R V-R Tt-R A-R T-R V-R Tt-R A-R

Reactor 1

BP algorithm trainrp BP algorithm trainlm BP algorithm trainrp BP algorithm trainrp

Scenario 1 0.98 0.94 0.91 0.94 0.99 0.85 0.93 0.95 0.99 0.94 0.96 0.97 0.99 0.95 0.96 0.98

BP algorithm trainrp BP algorithm trainrp BP algorithm trainrp BP algorithm trainrp

Scenario 2 0.99 0.90 0.81 0.92 0.99 0.99 0.96 0.98 0.99 0.95 0.96 0.97 0.98 0.92 0.95 0.96

Reactor 2

BP algorithm trainrp BP algorithm trainrp BP algorithm trainrp BP algorithm trainrp

Scenario 1 0.99 0.90 0.90 0.95 0.99 0.98 0.94 0.98 0.99 0.97 0.95 0.98 0.99 0.91 0.94 0.96

BP algorithm trainrp BP algorithm trainrp BP algorithm trainlm BP algorithm trainrp

Scenario 2 0.96 0.90 0.89 0.93 0.99 0.99 0.94 0.98 0.99 0.97 0.94 0.97 0.98 0.90 0.94 0.96

Reactor 3

BP algorithm trainlm BP algorithm trainscg BP algorithm trainlm BP algorithm trainrp

Scenario 1 0.99 0.77 0.92 0.92 0.99 0.97 0.96 0.97 0.99 0.91 0.94 0.95 0.97 0.87 0.9 0.94

BP algorithm trainrp BP algorithm trainlm BP algorithm trainlm BP algorithm trainlm

Scenario 2 0.96 0.85 0.96 0.93 0.99 0.97 0.97 0.98 0.99 0.87 0.93 0.95 0.98 0.96 0.83 0.94

*T-R training R-values, V-R validation R-values, Tt-R test R-values, A-R all R-values

Table 3 R-values of training, validation, test and all linear regressions at different neuron numbers for predicting effluent sulfate, COD,

alkalinity and sulfide concentrations of reactor 1, reactor 2, and reactor 3

Sulfate (mg/L) COD (mg/L) Alkalinity (mg CaCO3/L) Sulfide (mg/L)

*T-R V-R Tt-R A-R T-R V-R Tt-R A-R T-R V-R Tt-R A-R T-R V-R Tt-R A-R

Reactor 1

Neuron number 20 (trainrp) Neuron number 40 (trainlm) Neuron number 20 (trainrp) Neuron number 20 (trainrp)

Scenario 1 0.98 0.94 0.91 0.94 0.99 0.86 0.94 0.94 0.99 0.94 0.96 0.97 0.99 0.95 0.96 0.98

Neuron number 10 (trainlm) Neuron number 20 (trainrp) Neuron number 30 (trainlm) Neuron number 30 (traingdx)

Scenario 2 0.99 0.97 0.88 0.95 0.99 0.95 0.95 0.97 0.99 0.96 0.97 0.98 0.98 0.95 0.96 0.97

Reactor 2

Neuron number 20 (trainrp) Neuron number 3 (trainrp) Neuron number 10 (trainrp) Neuron number 20 (trainrp)

Scenario 1 0.99 0.90 0.90 0.95 0.99 0.99 0.95 0.98 0.99 0.97 0.97 0.98 0.99 0.91 0.94 0.96

Neuron number 20 (trainrp) Neuron number 10 (trainrp) Neuron number 5 (trainlm) Neuron number 20 (trainrp)

Scenario 2 0.96 0.90 0.89 0.93 0.99 0.99 0.95 0.98 0.99 0.98 0.97 0.98 0.98 0.90 0.94 0.96

Reactor 3

Neuron number 20 (trainlm) Neuron number 5 (trainscg) Neuron number 20 (trainlm) Neuron number 20 (trainrp)

Scenario 1 0.99 0.77 0.92 0.92 0.99 0.97 0.97 0.98 0.99 0.91 0.94 0.95 0.98 0.87 0.90 0.94

Neuron number 20 (trainrp) Neuron number 20 (trainlm) Neuron number 20 (trainlm) Neuron number 20 (trainlm)

Scenario 2 0.96 0.85 0.96 0.93 0.99 0.97 0.97 0.98 0.99 0.87 0.93 0.95 0.98 0.96 0.83 0.94

*T-R training R-values, V-R validation R-values, Tt-R test R-values, A-R all R-values
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Selection of the ANN Input Parameters

Modeling with ANN has two phases; the first phase

involves determining network parameters (e. g. the number

of layers and nodes in the hidden layer(s), the form and

parameters of activation function) for training purposes,

and the second phase tests the ANN parameters.

We used a two-layer ANN with a tan-sigmoid (neuron

model) transfer function for the hidden layer and a linear

transfer function for the output layer (Fig. 1). The input and

output parameters are also depicted in Fig. 1. Two scenarios

were modeled (Table 1). In addition to feed wastewater

characteristics, effluent pH was also used as an input

parameter in scenario 1 because pH is easy to measure. The

effluent pH was not used as input in scenario 2 so that we

could see how well the model could predict performance

when experimental data are not available. Operation time

was selected as an input parameter because biomass

concentration and microbial community can change over

time. Effluent sulfate, alkalinity, COD, and sulfide were

selected as output parameters. Half of the data were used for

training and one-fourth of the data was used for validation

and then the other fourth for testing of the model.

Results and Discussion

Optimization of the Back-Propagation Algorithm

and Neuron Number

Twelve BP algorithms were compared: trainlm (Levenberg–

Marquardt back-propagation), traincgp (conjugate gradient

back-propagation with PolakRibiere updates), traingd (gra-

dient descent back-propagation), traingda (gradient descent

with momentum and adaptive learning rate back-propaga-

tion), trainrp (resilient back-propagation), trainscg (scaled

Fig. 2 Measured and neural network prediction of reactor 1 effluent sulfate (a), effluent COD (b), effluent alkalinity (c), and effluent sulfide

(d) concentrations for scenarios 1 and 2 (mg/L CaCO3:mg/L calcium carbonate alkalinity)
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conjugate gradient back-propagation), trainoss (one step

secant back-propagation), traincgf (conjugate gradient back-

propagation with Fletcher-Reeves updates), trainbfg (BFGS

quasi-Newton back-propagation), traingdm (gradient des-

cent with momentum back-propagation), and traincgb

(conjugate gradient back-propagation with Powell-Beale

restarts) (Moral et al. 2008). In this comparison, the number

of neurons was kept constant at 20. The performance of the

BP algorithms was evaluated based on the root mean square

error (RMSE) and determination coefficient (R) between the

modeled output and measured data set. After selecting the

best BP algorithm, the number of neurons was optimized by

keeping all other parameters constant.

Predicting the Performance of UFBR and DFBRs

The applicability of ANN was investigated to predict the

effluent sulfate, COD, alkalinity, and sulfide of a UFBR

and two DFBRs. The training results are provided in

Table 2. The performance of the BP algorithms was

evaluated using the determination coefficient (R) of

‘‘Training’’, ‘‘Validation’’, ‘‘Test,’’ and ‘‘All’’ data. The

best fitting BP algorithms for predicting the different

effluent parameters of the three reactors were trainlm,

trainrp, trainscg, and traingdx (Table 2).

The optimum algorithm and neuron numbers for the

three reactors for scenario 1 and 2 are shown in Tables 2

and 3, respectively. After selecting the best BP algorithms,

the number of neurons was optimized, keeping all other

parameters constant (Table 3). The neuron numbers for the

two scenarios for the prediction of effluent parameters

varied in the range of 3 and 40. The all-R values (repre-

senting the training, validation and test-R values) in the

comparison of BP algorithms were observed in the range of

0.92 and 0.98.

Figures 2, 3, and 4 illustrate the time course variations

of measured and predicted data for the UFBR and two

DFBR reactors, respectively. The model data tracked the

measured data closely for all of the effluent parameters.

The developed ANN model satisfactorily predicted sulfate,

Fig. 3 Measured and neural network prediction of reactor 2 effluent sulfate (a), effluent COD (b), effluent alkalinity (c), and effluent sulfide

(d) concentrations for scenarios 1 and 2 (mg/L CaCO3:mg/L calcium carbonate alkalinity)
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COD, alkalinity and sulfide at the reactor effluent, which

allowed the fate of the externally added carbon and the

electron source to be easily predicted.

Modeling of metal recovering bioprocesses is very

important in optimizing reactor operational conditions.

However, it is very difficult to predict the performance of

such bioprocess using classical approaches, since perfor-

mance depends on several factors, such as wastewater

composition, operational parameters of the reactor, and the

microbial community (Sahinkaya 2009). This study has

shown that ANNs can be used to model the performance of

metal recovering sulfidogenic upflow and downflow FBRs.

In the second scenario, the reactor performance was suc-

cessfully predicted, which would be useful during the

reactor design phase (before processing). ANN can also be

used to predict the response of the bioreactor to great

variations in the composition of the incoming wastewater

and unexpected overloads. This may allow an operation

engineer to take measures to avoid possible process upsets

due to unpredicted changes in the incoming wastewater.

Using the ANN predictions, pre-treatments (such as

neutralization) and metal precipitation can also be used to

maintain good process performance during such over-

loading periods (Sahinkaya et al. 2007).

Conclusions

The designed, trained, and validated neural network model

predicted the performance of the UFBR and DFBRs in the

treatment of AMD. The developed model gave satisfactory

fits to the experimentally obtained sulfate, COD, alkalinity,

and sulfide data. The all-R values in the comparison of BP

algorithms were observed as higher than 0.90. In the sec-

ond scenario, the reactor performance was predicted

without using effluent parameters as model input data,

which may allow the prediction of reactor performance at

different operational conditions without conducting

experiments. The microbiology of anaerobic processes is

complex as it depends on interdependent activity of a

number of organisms. ANN can be effectively used to

predict the performance of such complex systems. Thus, it

Fig. 4 Measured and neural network prediction of reactor 3 effluent sulfate (a), effluent COD (b), effluent alkalinity (c), and effluent sulfide

(d) concentrations for scenarios 1 and 2 (mg/L CaCO3:mg/L calcium carbonate alkalinity)
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is possible to optimize operational costs to reduce the high

expenses of chemicals with the proposed model-based

applications.
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