Thai Journal of Mathematics Volume 15 (2017) Number 2 : 465–474 Thai J. Math

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Some Geometric Properties of Generalized Difference Cesàro Sequence Spaces

Hacer Şengül † and Mikail $\text{Et}^{\ddagger,1}$

[†]Department of Mathematics, Siirt University, 56100, Siirt, Turkey e-mail : hacer.sengul@hotmail.com

[‡]Department of Mathematics, Firat University, 23119, Elazig, Turkey e-mail : mikailet@yahoo.com

Abstract: In this paper, we define the generalized Cesàro difference sequence space $C_{(p)}(\Delta^m)$ and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space $C_{(p)}(\Delta^m)$ every weakly convergent sequence on the unit sphere converges is the norm, where $p = (p_n)$ is a bounded sequence of positive real numbers with $p_n > 1$ for all $n \in \mathbb{N}$.

Keywords : Cesàro difference sequence space; Luxemburg norm; extreme point; convex modular; property (H).

2010 Mathematics Subject Classification: 40A05; 46A45; 46B20.

1 Introduction

Let X be a real Banach space and let B(X) and S(X) be the closed unit ball and the unit sphere of X, respectively. A point $x \in S(X)$ is called an *extreme point* if for any $y, z \in B(X)$ the equality 2x = y + z implies y = z.

A Banach space X is said to have property (H) if every weakly convergent sequence on the unit sphere is convergent in norm.

For a real vector space X, a function $\rho: X \longrightarrow [0, \infty]$ is called a *modular* if it satisfies the following conditions:

- (i) $\rho(x) = 0$ if and only if x = 0,
- (ii) $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$,

¹Corresponding author.

Copyright 2017 by the Mathematical Association of Thailand. All rights reserved.

- (iii) $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if
- (iv) $\varrho(\alpha x + \beta y) \leq \alpha \varrho(x) + \beta \varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. For any modular ρ on X, the space

$$X_{\varrho} = \{x \in X : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0\}$$

is called the *modular space*. If ρ is a convex modular, the functions

$$\begin{aligned} \|x\| &= \inf\left\{\lambda > 0: \rho\left(\frac{x}{\lambda}\right) \le 1\right\} \\ \|x\|_0 &= \inf_{k>0} \frac{1}{k} \left(1 + \rho(kx)\right) \end{aligned}$$

are two norms on X_{ϱ} , which are called the *Luxemburg norm* and the *Amemiya norm*, respectively. These norms are equivalent (see [1]).

Let us denote by ℓ^0 the space of all real sequences. The Cesàro sequence spaces

$$ces_{p} = \left\{ x \in \ell^{0} : \sum_{n=1}^{\infty} \left(n^{-1} \sum_{i=1}^{n} |x(i)| \right)^{p} < \infty \right\}, \ 1 \le p < \infty$$

and

$$ces_{\infty} = \left\{ x \in \ell^{0} : \sup_{n} n^{-1} \sum_{i=1}^{n} |x(i)| < \infty \right\}$$

have been introduced by Shiue [2]. Jagers [3] has determined the Köthe duals of the sequence space ces_p $(1 . It can be shown that the inclusion <math>\ell_p \subset ces_p$ is strict for 1 although it does not hold for <math>p = 1. Some geometric properties of the Cesàro sequence space have been studied by Cui and Hudzik [4,5], Cui *et al.* [6], Karakaya [7], Lee [8], Leibowitz [9], Maligranda [10], Maligranda *et al.* [11], Mursaleen et al. [12], Musielak [1], Petrot and Suantai [13, 14], Sanhan and Suantai [15], Şimşek *et al.* [16], Suantai [17, 18] and many others.

The difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$, consisting of all real valued sequences x = (x(k)) such that $\Delta x = (x(k) - x(k+1))$ in the sequence spaces ℓ_{∞} , c and c_0 , were defined by Kızmaz [19]. The idea of difference sequences was generalized by Et and Çolak [20]. Later on difference sequence spaces have been studied by Altın [21], Altay and Basar [22], Bhardwaj and Bala [23], Et *et al.* [24, 25], Işık [26], Srivastava and Kumar [27], Tripathy *et al.* [28–36] and many others. Recently, Et [37] defined the Cesàro difference sequence space $C_p(\Delta^m)$ as follows:

$$C_p(\Delta^m) = \left\{ x \in \ell^0 : \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)| \right)^p < \infty, \quad 1 \le p < \infty \right\},$$

where $m \in \mathbb{N}$ (the set of positive integers), $\Delta^{0}x = (x(k)), \ \Delta x = (x(k) - x(k+1)), \ \Delta^{m}x = (\Delta^{m}x(k)) = (\Delta^{m-1}x(k) - \Delta^{m-1}x(k+1))$

and so that $\Delta^m x(k) = \sum_{v=0}^m (-1)^v {m \choose v} x(k+v)$. The space $C_p(\Delta^m)$ is a Banach space for $1 \le p < \infty$ normed by

$$\|x\|_{p} = \sum_{i=1}^{m} |x(i)| + \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)|\right)^{p}\right)^{\frac{1}{p}}.$$

Let $p = (p_n)$ be a sequence of positive real numbers with $p_n \ge 1$ for all $n \in \mathbb{N}$. Now we define the generalized Cesàro difference sequence space $C_{(p)}(\Delta^m)$ by

$$C_{(p)}(\Delta^m) = \left\{ x \in \ell^0 : \rho_{\Delta^m}(\lambda x) < \infty \text{ for some } \lambda > 0 \right\}$$

where

$$\rho_{\Delta^m}(x) = \sum_{i=1}^m |x(i)| + \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)|\right)^{p_n}.$$

We consider the space $C_{(p)}(\Delta^m)$ equipped with Luxemburg norm

$$\|x\| = \inf\left\{\lambda > 0 : \rho_{\Delta^m}\left(\frac{x}{\lambda}\right) \le 1\right\}.$$
(1.1)

If $p = (p_n)$ is bounded, then we have

$$C_{(p)}(\Delta^m) = \left\{ x = x(k) : \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)| \right)^{p_n} < \infty \right\}.$$

Throughout this paper we assume that $p = (p_n)$ is bounded with $p_n > 1$ for all $n \in \mathbb{N}$ and $M = \sup_n p_n$.

2 Main Results

We begin establishing some basic properties of modular on the space $C_{(p)}(\Delta^m)$.

Theorem 2.1. The functional ρ_{Δ^m} on $C_{(p)}(\Delta^m)$ is a convex modular.

Proof. We have

$$\rho_{\Delta^m}(x) = 0 \iff \rho_{\Delta^m}(x) = \sum_{i=1}^m |x(i)| + \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)|\right)^{p_n} = 0$$
$$\iff \sum_{i=1}^m |x(i)| = 0 \text{ and } \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)|\right)^{p_n} = 0$$
$$\iff x = 0.$$

It is obvious that $\rho_{\Delta^m}(\alpha x) = \rho_{\Delta^m}(x)$ for all scalar α with $|\alpha| = 1$. If $x, y \in C_{(p)}(\Delta^m)$ and $\alpha \ge 0, \beta \ge 0$ with $\alpha + \beta = 1$, by the convexity of the function $t \to |t|^{p_n}$ for every $n \in \mathbb{N}$ and the linearity of the operator Δ^m , we have

$$\begin{split} \rho_{\Delta^m}(\alpha x + \beta y) &= \sum_{i=1}^m |\alpha x(i) + \beta y(i)| + \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m \left(\alpha x(k) + \beta y(k) \right)| \right)^{p_n} \\ &\leq \sum_{i=1}^m (\alpha |x(i)| + \beta |y(i)|) + \sum_{n=1}^\infty \left(\alpha \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)| \right) \right) \\ &+ \beta \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m y(k)| \right) \right)^{p_n} \\ &\leq \alpha \sum_{i=1}^m |x(i)| + \beta \sum_{i=1}^m |y(i)| + \alpha \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)| \right)^{p_n} \\ &+ \beta \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m y(k)| \right)^{p_n} \\ &= \alpha \rho_{\Delta^m}(x) + \beta \rho_{\Delta^m}(y). \end{split}$$

The proofs of the following two theorems can be established using known and standard techniques. Therefore we state the theorems without proof.

Theorem 2.2. For $x \in C_{(p)}(\Delta^m)$, the modular ρ_{Δ^m} on $C_{(p)}(\Delta^m)$ satisfies the following properties:

- (i) if 0 < a < 1, then $a^M \rho_{\Delta^m}\left(\frac{x}{a}\right) \le \rho_{\Delta^m}(x)$ and $\rho_{\Delta^m}(ax) \le a\rho_{\Delta^m}(x)$,
- (ii) if $a \ge 1$, then $\rho_{\Delta^m}(x) \le a^M \rho_{\Delta^m}\left(\frac{x}{a}\right)$,
- (iii) if $a \ge 1$, then $\rho_{\Delta^m}(x) \le a\rho_{\Delta^m}(x) \le \rho_{\Delta^m}(ax)$.

Theorem 2.3. For any $x \in C_{(p)}(\Delta^m)$, we have

- (i) if ||x|| < 1, then $\rho_{\Delta^m}(x) \le ||x||$,
- (*ii*) if ||x|| > 1, then $\rho_{\Delta^m}(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\rho_{\Delta^m}(x) = 1$,
- (iv) ||x|| < 1 if and only if $\rho_{\Delta^m}(x) < 1$,
- (v) ||x|| > 1 if and only if $\rho_{\Delta^m}(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\rho_{\Delta^m}(x) > a^M$,
- (vii) if $a \ge 1$ and ||x|| < a, then $\rho_{\Delta^m}(x) < a^M$.

Theorem 2.4. The sequence space $C_{(p)}(\Delta^m)$ is a Banach space normed by (1.1).

Proof. It is a routine verification that $C_{(p)}(\Delta^m)$ is a normed space normed by (1.1). To show that $C_{(p)}(\Delta^m)$ is complete, let (x_s) be a Cauchy sequence in $C_{(p)}(\Delta^m)$ and $\varepsilon \in (0, 1)$. For $H = \max\{1, M\}$, there exists n_0 such that

$$||x_s - x_t|| = \inf \left\{ \lambda > 0 : \rho_{\Delta^m} \left(\frac{x_s - x_t}{\lambda} \right) \le 1 \right\} < \varepsilon^H$$

for all $s, t \ge n_0$. By Theorem 2.3(i) we have

$$\rho_{\Delta^m}(x_s - x_t) < \|x_s - x_t\| < \varepsilon^H \tag{2.1}$$

for all $s, t \ge n_0$, which means that

$$\sum_{i=1}^{m} |x_s(i) - x_t(i)| + \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^m (x_s(k) - x_t(k))| \right)^{p_n} < \varepsilon$$

for all $s, t \ge n_0$. We have

$$\sum_{i=1}^{m} |x_s(i) - x_t(i)| < \frac{\varepsilon}{2}$$

and

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \left| \Delta^m \left(x_s(k) - x_t(k) \right) \right| \right)^{p_n} < \frac{\varepsilon}{2}.$$

For fixed $i \in \mathbb{N}$, we can write

$$|x_s(i) - x_t(i)| < \frac{\varepsilon}{2}.$$

Hence we obtain that the sequence $(x_t(i))$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $x_t(i) \longrightarrow x(i)$ as $t \longrightarrow \infty$. We have

$$|x_s(i) - x(i)| < \frac{\varepsilon}{2}$$

and

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \left| \Delta^m \left(x_s(k) - x(k) \right) \right| \right)^{p_n} < \frac{\varepsilon}{2}$$

for all $s \ge n_0$. Now we show that the sequence (x(i)) is an element of $C_{(p)}(\Delta^m)$. From the inequality (2.1), we can write

$$\rho_{\Delta^m}(x_s - x_t) \longrightarrow \rho_{\Delta^m}(x_s - x)_t$$

as $t \to \infty$ for all $s \ge n_0$. Thus we have $\rho_{\Delta^m}(x_s - x) < ||x_s - x|| < \varepsilon$ for all $s \ge n_0$. Since $C_{(p)}(\Delta^m)$ is a linear space, we have $x = x_{n_0} - (x_{n_0} - x) \in C_{(p)}(\Delta^m)$. This completes the proof.

We state the following result without proof.

Theorem 2.5. Let (x_s) be a sequence in $C_{(p)}(\Delta^m)$

- (i) If $||x_s|| \longrightarrow 1$ as $s \longrightarrow \infty$, then $\rho_{\Delta^m}(x_s) \longrightarrow 1$ as $s \longrightarrow \infty$,
- (ii) If $\rho_{\Delta^m}(x_s) \longrightarrow 0$ as $s \longrightarrow \infty$, then $||x_s|| \longrightarrow 0$ as $s \longrightarrow \infty$.

Now we show that $C_{(p)}(\Delta^m)$ has the property (H). First we prove the following.

Lemma 2.6. Let $x \in C_{(p)}(\Delta^m)$ and $(x_s) \subseteq C_{(p)}(\Delta^m)$. If $\rho_{\Delta^m}(x_s) \longrightarrow \varrho_{\Delta^m}(x)$ as $s \longrightarrow \infty$ and $\Delta^m x_s(k) \longrightarrow \Delta^m x(k)$ as $s \longrightarrow \infty$ for all $k \in \mathbb{N}$, then $x_s \longrightarrow x$ as $s \longrightarrow \infty$.

Proof. Let $\varepsilon > 0$ be given. Since $\rho_{\Delta^m}(x) = \sum_{i=1}^m |x(i)| + \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)|\right)^{p_n} < \infty$, there exists $k_0 \in \mathbb{N}$ such that

$$\sum_{i=1}^{m} |x(i)| + \sum_{n=k_0+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^m x(k)| \right)^{p_n} < \frac{\varepsilon}{3} \frac{1}{2^{M+1}}.$$
 (2.2)

Since $\rho_{\Delta^m}(x_s) \longrightarrow \rho_{\Delta^m}(x)$ as $s \longrightarrow \infty$ and $\Delta^m x_s(k) \longrightarrow \Delta^m x(k)$ as $s \longrightarrow \infty$ for all $k \in \mathbb{N}$, we have

$$\varrho_{\Delta^m}(x_s) - \sum_{n=1}^{k_0} \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x_s(k)| \right)^{p_n} \longrightarrow \varrho_{\Delta^m}(x) - \sum_{n=1}^{k_0} \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x(k)| \right)^{p_n}.$$

Thus there exists $n_0 \in \mathbb{N}$ such that

$$\rho_{\Delta^{m}}(x_{s}) - \sum_{n=1}^{k_{0}} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x_{s}(k)| \right)^{p_{n}} < \rho_{\Delta^{m}}(x) - \sum_{n=1}^{k_{0}} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} + \frac{\varepsilon}{3} \frac{1}{2^{M}}, \text{ for all } s \ge n_{0}$$
(2.3)

and

$$\sum_{n=1}^{k_0} \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x_s(k) - \Delta^m x(k)| \right)^{p_n} < \frac{\varepsilon}{3}, \text{ for all } s \ge n_0 .$$
 (2.4)

It follows from (2.2), (2.3) and (2.4) that for $s \ge n_0$,

$$\rho_{\Delta^m}(x_s - x) = \sum_{i=1}^m |x_s(i) - x(i)| + \sum_{n=1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x_s(k) - \Delta^m x(k)|\right)^{p_n}$$

$$\leq \sum_{i=1}^m |x_s(i)| + \sum_{i=1}^m |x(i)| + \sum_{n=1}^k \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x_s(k) - \Delta^m x(k)|\right)^{p_n}$$

$$+ \sum_{n=k_0+1}^\infty \left(\frac{1}{n} \sum_{k=1}^n |\Delta^m x_s(k) - \Delta^m x(k)|\right)^{p_n}$$

$$\begin{split} &\leq \frac{\varepsilon}{3} + 2^{M} \left(\sum_{i=1}^{m} |x_{s}(i)| + \sum_{i=1}^{m} |x(i)| + \sum_{n=k_{0}+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x_{s}(k)| \right)^{p_{n}} \right) \\ &+ \sum_{n=k_{0}+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} \right) \\ &= \frac{\varepsilon}{3} + 2^{M} \left(\rho_{\Delta^{m}}(x_{s}) - \sum_{n=1}^{k_{0}} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x_{s}(k)| \right)^{p_{n}} + \sum_{i=1}^{m} |x(i)| \\ &+ \sum_{n=k_{0}+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} \right) \\ &< \frac{\varepsilon}{3} + 2^{M} \left(\rho_{\Delta^{m}}(x) - \sum_{n=1}^{k_{0}} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} + \frac{\varepsilon}{3} \frac{1}{2^{M}} + \sum_{i=1}^{m} |x(i)| \\ &+ \sum_{n=k_{0}+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} \right) \\ &= \frac{\varepsilon}{3} + 2^{M} \left(2 \sum_{i=1}^{m} |x(i)| + 2 \sum_{n=k_{0}+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x(k)| \right)^{p_{n}} + \frac{\varepsilon}{3} \frac{1}{2^{M}} \right) \\ &\leq \frac{\varepsilon}{3} + 2^{M} \left(2 \frac{\varepsilon}{3} \frac{1}{2^{M+1}} + \frac{\varepsilon}{3} \frac{1}{2^{M}} \right) \\ &= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{split}$$

This show that $\rho_{\Delta^m}(x_s - x) \longrightarrow 0$ as $s \longrightarrow \infty$. Hence, by Theorem 2.5(*ii*), we have $||x_s - x|| \longrightarrow 0$ as $s \longrightarrow \infty$.

Theorem 2.7. The space $C_{(p)}(\Delta^m)$ has the property (H).

Proof. Let $x \in S(C_{(p)}(\Delta^m))$ and $(x_s) \subseteq C_{(p)}(\Delta^m)$ such that $||x_s|| \longrightarrow 1$ and $x_s \xrightarrow{w} x$ as $s \longrightarrow \infty$. From Theorem 2.3(*iii*), we have $\rho_{\Delta^m}(x) = 1$, so it follows from Theorem 2.5 (*i*) that $\rho_{\Delta^m}(x_s) \longrightarrow \rho_{\Delta^m}(x)$ as $s \longrightarrow \infty$. Since the mapping $p_k : C_{(p)}(\Delta^m) \longrightarrow \mathbb{R}$, defined by $p_k(y) = \Delta^m y(k)$, is a continuous linear functional on $C_{(p)}(\Delta^m)$, it follows that $\Delta^m x_s(k) \longrightarrow \Delta^m x(k)$ as $s \longrightarrow \infty$ for all $k \in \mathbb{N}$. Thus, we obtain by Lemma 2.6 that $x_s \longrightarrow x$ as $s \longrightarrow \infty$.

Acknowledgements : The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions.

References

 J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.

- [2] J.S. Shiue, On the Cesàro sequence space, Tamkang J. Math. 1 (1) (1970) 19-25.
- [3] A.A. Jagers, A note on Cesàro sequence spaces, Nieuw Arch. Wisk. 22 (3) (1974) 113-124.
- [4] Y. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1-2) (1999) 179-187.
- [5] Y. Cui, H. Hudzik, Some geometric properties related to fixed point theory in Cesàro spaces, Collect. Math. 50 (3) (1999) 277-288.
- [6] Y. Cui, C. Meng, R. Płuciennik, Banach-Saks property and property β in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2) (2000) 201-210.
- [7] V. Karakaya, Some geometric properties of sequence spaces involving lacunary sequence, J. Inequal. Appl. 2007, Art. ID 81028, 8 pages.
- [8] P.Y. Lee, Cesàro sequence spaces, Math. Chronicle 13 (1984) 29-45.
- [9] G.M. Leibowitz, A note on the Cesàro sequence spaces, Tamkang J. Math. 2 (2) (1971) 151-157.
- [10] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, University of Campinas, Campinas SP, Brazil, 1989.
- [11] L. Maligranda, N. Petrot, S. Suantai, On the James constant and B-convexity of Cesàro and Cesà ro-Orlicz sequences spaces, J. Math. Anal. Appl. 326 (1) (2007) 312-331.
- [12] M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, J. Inequal. Appl. 2007, Art. ID 86757, 6 pages.
- [13] N. Petrot, S. Suantai, On uniform Kadec-Klee properties and rotundity in generalized Cesàro sequence spaces, Internat. J. Math. Sci. 2 (2004) 91-97.
- [14] N. Petrot, S. Suantai, Uniform Opial properties in generalized Cesàro sequence spaces, Nonlinear Anal. 63 (8) (2005) 1116-1125.
- [15] W. Sanhan, S. Suantai, On k-nearly uniform convex property in generalized Cesàro sequence spaces, Int. J. Math. Math. Sci. 57 (2003) 3599-3607.
- [16] N. Şimşek, E. Savaş, V. Karakaya, Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean, J. Comput. Anal. Appl. 12 (4) (2010) 768-779.
- [17] S. Suantai, On the *H*-Property of some Banach sequence spaces, Arch. Math.(BRNO) 39 (4) (2003) 309-316.
- [18] S. Suantai, On some convexity properties of generalized Cesàro sequence spaces, Georgian Math. J. 10 (1) (2003) 193-200.

- [19] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981) 169-176.
- [20] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995) 377-386.
- [21] Y. Altın, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29 (2) (2009) 427-434.
- [22] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , (0 , Commun. Math. Anal. 2 (2) (2007) 1-11.
- [23] V.K. Bhardwaj, I. Bala, Generalized difference sequence space defined by $|\bar{N}, p_k|$ summability and an Orlicz function in seminormed space, Math. Slovaca 60 (2) (2010) 257-264.
- [24] M. Et, Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math. 10 (4) (2006) 865-879.
- [25] M. Et, Y. Altin, B. Choudhary, B.C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Math. Inequal. Appl. 9 (2) (2006) 335-342.
- [26] M. Işık, On statistical convergence of generalized difference sequences, Soochow J. Math. 30 (2) (2004) 197-205.
- [27] P.D. Srivastava, S. Kumar, Generalized vector-valued paranormed sequence space using modulus function, Appl. Math. Comput. 215 (12) (2010) 4110-4118.
- [28] B.C. Tripathy, S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Applicata Sinica (Eng. Ser.) 20 (2) (2004) 231-238.
- [29] B.C. Tripathy, Y. Altin, M. Et, Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions, Math. Slovaca 58 (3) (2008) 315-324.
- [30] B.C. Tripathy, S. Borgogain, Difference sequence space $m(M, \varphi, \Delta_m^n, p)^F$ of fuzzy real numbers, Math. Modell. Analysis 13 (4) (2008) 577-586.
- [31] B.C. Tripathy, B. Choudhary, B. Sarma, Some difference double sequence spaces defined by Orlicz function, Kyungpook Math. J. 48 (4) (2008) 613-622.
- [32] B.C. Tripathy, A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Math. Modell. Analysis 14 (3) (2009) 391-397.
- [33] B.C. Tripathy, H. Dutta, On some new paranormed difference sequence spaces defined by Orlicz functions, Kyungpook Math. J. 50 (1) (2010) 59-69.

- [34] B.C. Tripathy, A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J. 50 (4) (2010) 565-574.
- [35] B.C. Tripathy, P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl. 27 (1) (2011) 21-27.
- [36] B.C. Tripathy, S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Adv. Fuzzy Syst. 2011, Article ID216414, 6 pp.
- [37] M. Et, On some generalized Cesàro difference sequence spaces, İstanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/1997) 221-229.

(Received 8 May 2012) (Accepted 29 January 2015)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th