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Abstract : In this paper, we define the generalized Cesàro difference sequence
space C(p)(∆

m) and consider it equipped with the Luxemburg norm under which it
is a Banach space and we show that in the space C(p)(∆

m) every weakly convergent
sequence on the unit sphere converges is the norm, where p = (pn) is a bounded
sequence of positive real numbers with pn > 1 for all n ∈ N.
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1 Introduction

Let X be a real Banach space and let B(X) and S(X) be the closed unit ball
and the unit sphere of X, respectively. A point x ∈ S(X) is called an extreme

point if for any y, z ∈ B(X) the equality 2x = y + z implies y = z.
A Banach space X is said to have property (H) if every weakly convergent

sequence on the unit sphere is convergent in norm.
For a real vector space X, a function ̺ : X −→ [0,∞] is called a modular if it

satisfies the following conditions:

(i) ̺(x) = 0 if and only if x = 0,

(ii) ̺(αx) = ̺(x) for all scalar α with |α| = 1,
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(iii) ̺(αx + βy) ≤ ̺(x) + ̺(y) for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

The modular ̺ is called convex if

(iv) ̺(αx+βy) ≤ α̺(x)+β̺(y) for all x, y ∈ X and all α, β ≥ 0 with α+β = 1.

For any modular ̺ on X, the space

X̺ = {x ∈ X : ̺(λx) < ∞ for some λ > 0}

is called the modular space. If ̺ is a convex modular, the functions

‖x‖ = inf
{

λ > 0 : ̺
(x

λ

)

≤ 1
}

,

‖x‖0 = inf
k>0

1

k
(1 + ̺(kx))

are two norms on X̺, which are called the Luxemburg norm and the Amemiya

norm, respectively. These norms are equivalent (see [1]).
Let us denote by ℓ0 the space of all real sequences. The Cesàro sequence spaces

cesp =

{

x ∈ ℓ0 :

∞
∑

n=1

(

n−1
n
∑

i=1

|x (i)|

)p

< ∞

}

, 1 ≤ p < ∞

and

ces∞ =

{

x ∈ ℓ0 : sup
n

n−1
n
∑

i=1

|x (i)| < ∞

}

have been introduced by Shiue [2]. Jagers [3] has determined the Köthe duals of the
sequence space cesp (1 < p < ∞). It can be shown that the inclusion ℓp ⊂ cesp
is strict for 1 < p < ∞ although it does not hold for p = 1. Some geometric
properties of the Cesàro sequence space have been studied by Cui and Hudzik [4,5],
Cui et al. [6], Karakaya [7], Lee [8], Leibowitz [9], Maligranda [10], Maligranda
et al. [11], Mursaleen et al. [12], Musielak [1], Petrot and Suantai [13, 14], Sanhan
and Suantai [15], Şimşek et al. [16], Suantai [17, 18] and many others.

The difference sequence spaces ℓ∞ (∆), c (∆) and c0 (∆), consisting of all real
valued sequences x = (x (k)) such that ∆x = (x (k) − x (k + 1)) in the sequence
spaces ℓ∞, c and c0, were defined by Kızmaz [19]. The idea of difference sequences
was generalized by Et and Çolak [20]. Later on difference sequence spaces have
been studied by Altın [21], Altay and Basar [22], Bhardwaj and Bala [23], Et et

al. [24,25], Işık [26], Srivastava and Kumar [27], Tripathy et al. [28–36] and many
others. Recently, Et [37] defined the Cesàro difference sequence space Cp(∆m) as
follows:

Cp(∆m) =

{

x ∈ ℓ0 :
∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx (k)|

)p

< ∞, 1 ≤ p < ∞

}

,

where m ∈ N (the set of positive integers), ∆0x = (x (k)), ∆x = (x (k)−x (k + 1)),
∆mx = (∆mx (k)) = (∆m−1x (k) − ∆m−1x (k + 1))
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and so that ∆mx (k) =
m
∑

v=0
(−1)v

(

m

v

)

x (k + v) . The space Cp(∆m) is a Banach

space for 1 ≤ p < ∞ normed by

‖x‖p =

m
∑

i=1

|x (i)| +

(

∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx (k)|

)p)
1

p

.

Let p = (pn) be a sequence of positive real numbers with pn ≥ 1 for all n ∈ N.

Now we define the generalized Cesàro difference sequence space C(p)(∆
m) by

C(p)(∆
m) =

{

x ∈ ℓ0 : ρ∆m(λx) < ∞ for some λ > 0
}

,

where

ρ∆m(x) =
m
∑

i=1

|x(i)| +
∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

.

We consider the space C(p)(∆
m) equipped with Luxemburg norm

‖x‖ = inf
{

λ > 0 : ρ∆m

(x

λ

)

≤ 1
}

. (1.1)

If p = (pn) is bounded, then we have

C(p)(∆
m) =

{

x = x(k) :
∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

< ∞

}

.

Throughout this paper we assume that p = (pn) is bounded with pn > 1 for all
n ∈ N and M = sup

n

pn.

2 Main Results

We begin establishing some basic properties of modular on the space C(p)(∆
m).

Theorem 2.1. The functional ρ∆m on C(p)(∆
m) is a convex modular.

Proof. We have

ρ∆m(x) = 0 ⇐⇒ ρ∆m(x) =

m
∑

i=1

|x(i)| +

∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

= 0

⇐⇒

m
∑

i=1

|x(i)| = 0 and

∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

= 0

⇐⇒ x = 0.
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It is obvious that ρ∆m(αx) = ρ∆m(x) for all scalar α with |α| = 1. If x, y ∈
C(p)(∆

m) and α ≥ 0, β ≥ 0 with α + β = 1, by the convexity of the function
t → |t|

pn for every n ∈ N and the linearity of the operator ∆m, we have

ρ∆m(αx + βy) =

m
∑

i=1

|αx(i) + βy(i)| +

∞
∑

n=1

(

1

n

n
∑

k=1

|∆m (αx(k) + βy(k))|

)pn

≤

m
∑

i=1

(α |x(i)| + β |y(i)|) +

∞
∑

n=1

(

α

(

1

n

n
∑

k=1

|∆mx(k)|

)

+ β

(

1

n

n
∑

k=1

|∆my(k)|

))pn

≤ α

m
∑

i=1

|x(i)| + β

m
∑

i=1

|y(i)| + α

∞
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

+ β

∞
∑

n=1

(

1

n

n
∑

k=1

|∆my(k)|

)pn

= αρ∆m(x) + βρ∆m(y).

The proofs of the following two theorems can be established using known and
standard techniques. Therefore we state the theorems without proof.

Theorem 2.2. For x ∈ C(p)(∆
m), the modular ρ∆m on C(p)(∆

m) satisfies the

following properties:

(i) if 0 < a < 1, then aMρ∆m

(

x
a

)

≤ ρ∆m(x) and ρ∆m(ax) ≤ aρ∆m(x),

(ii) if a ≥ 1, then ρ∆m(x) ≤ aMρ∆m

(

x
a

)

,

(iii) if a ≥ 1, then ρ∆m(x) ≤ aρ∆m(x) ≤ ρ∆m(ax).

Theorem 2.3. For any x ∈ C(p)(∆
m), we have

(i) if ‖x‖ < 1, then ρ∆m(x) ≤ ‖x‖ ,

(ii) if ‖x‖ > 1, then ρ∆m(x) ≥ ‖x‖ ,

(iii) ‖x‖ = 1 if and only if ρ∆m(x) = 1,

(iv) ‖x‖ < 1 if and only if ρ∆m(x) < 1,

(v) ‖x‖ > 1 if and only if ρ∆m(x) > 1,

(vi) if 0 < a < 1 and ‖x‖ > a, then ρ∆m(x) > aM ,

(vii) if a ≥ 1 and ‖x‖ < a, then ρ∆m(x) < aM .

Theorem 2.4. The sequence space C(p)(∆
m) is a Banach space normed by (1.1).
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Proof. It is a routine verification that C(p)(∆
m) is a normed space normed by (1.1).

To show that C(p)(∆
m) is complete, let (xs) be a Cauchy sequence in C(p)(∆

m)
and ε ∈ (0, 1). For H = max {1,M} , there exists n0 such that

‖xs − xt‖ = inf

{

λ > 0 : ρ∆m

(

xs − xt

λ

)

≤ 1

}

< εH

for all s, t ≥ n0. By Theorem 2.3(i) we have

ρ∆m(xs − xt) < ‖xs − xt‖ < εH (2.1)

for all s, t ≥ n0, which means that

m
∑

i=1

|xs(i) − xt(i)| +

∞
∑

n=1

(

1

n

n
∑

k=1

|∆m (xs(k) − xt(k))|

)pn

< ε

for all s, t ≥ n0. We have
m
∑

i=1

|xs(i) − xt(i)| <
ε

2

and
∞
∑

n=1

(

1

n

n
∑

k=1

|∆m (xs(k) − xt(k))|

)pn

<
ε

2
.

For fixed i ∈ N, we can write

|xs(i) − xt(i)| <
ε

2
.

Hence we obtain that the sequence (xt(i)) is a Cauchy sequence in R. Since R is
complete, xt(i) −→ x(i) as t −→ ∞. We have

|xs(i) − x(i)| <
ε

2

and
∞
∑

n=1

(

1

n

n
∑

k=1

|∆m (xs(k) − x(k))|

)pn

<
ε

2

for all s ≥ n0. Now we show that the sequence (x(i)) is an element of C(p)(∆
m).

From the inequality (2.1), we can write

ρ∆m(xs − xt) −→ ρ∆m(xs − x),

as t −→ ∞ for all s ≥ n0. Thus we have ρ∆m(xs−x) < ‖xs − x‖ < ε for all s ≥ n0.

Since C(p)(∆
m) is a linear space, we have x = xn0

− (xn0
− x) ∈ C(p)(∆

m). This
completes the proof.

We state the following result without proof.



470 Thai J. Math. 15 (2017)/ H. Şengül and M. Et

Theorem 2.5. Let (xs) be a sequence in C(p)(∆
m)

(i) If ‖xs‖ −→ 1 as s −→ ∞, then ρ∆m(xs) −→ 1 as s −→ ∞,

(ii) If ρ∆m(xs) −→ 0 as s −→ ∞, then ‖xs‖ −→ 0 as s −→ ∞.

Now we show that C(p)(∆
m) has the property (H). First we prove the following.

Lemma 2.6. Let x ∈ C(p)(∆
m) and (xs) ⊆ C(p)(∆

m). If ρ∆m(xs) −→ ̺∆m(x) as

s −→ ∞ and ∆mxs(k) −→ ∆mx(k) as s −→ ∞ for all k ∈ N, then xs −→ x as

s −→ ∞.

Proof. Let ε > 0 be given. Since ̺∆m(x) =
m
∑

i=1

|x(i)|+
∞
∑

n=1

(

1
n

n
∑

k=1

|∆mx(k)|

)pn

<

∞, there exists k0 ∈ N such that

m
∑

i=1

|x(i)| +

∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

<
ε

3

1

2M+1
. (2.2)

Since ρ∆m(xs) −→ ̺∆m(x) as s −→ ∞ and ∆mxs(k) −→ ∆mx(k) as s −→ ∞ for
all k ∈ N, we have

̺∆m(xs) −

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k)|

)pn

−→ ̺∆m(x) −

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

.

Thus there exists n0 ∈ N such that

ρ∆m(xs) −

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k)|

)pn

< ρ∆m(x)−

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

+
ε

3

1

2M
, for all s ≥ n0 (2.3)

and

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k) − ∆mx(k)|

)pn

<
ε

3
, for all s ≥ n0 . (2.4)

It follows from (2.2), (2.3) and (2.4) that for s ≥ n0,

ρ∆m(xs − x) =
m
∑

i=1

|xs(i) − x(i)| +
∞
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k) − ∆mx(k)|

)pn

≤

m
∑

i=1

|xs(i)| +

m
∑

i=1

|x(i)| +

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k) − ∆mx(k)|

)pn

+
∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mxs(k) − ∆mx(k)|

)pn
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≤
ε

3
+ 2M

(

m
∑

i=1

|xs(i)| +

m
∑

i=1

|x(i)| +

∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mxs(k)|

)pn

+

∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn
)

=
ε

3
+ 2M

(

ρ∆m(xs) −

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mxs(k)|

)pn

+

m
∑

i=1

|x(i)|

+
∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn
)

<
ε

3
+ 2M

(

ρ∆m(x) −

k0
∑

n=1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

+
ε

3

1

2M
+

m
∑

i=1

|x(i)|

+

∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn
)

=
ε

3
+ 2M

(

2

m
∑

i=1

|x(i)| + 2

∞
∑

n=k0+1

(

1

n

n
∑

k=1

|∆mx(k)|

)pn

+
ε

3

1

2M

)

≤
ε

3
+ 2M

(

2
ε

3

1

2M+1
+

ε

3

1

2M

)

=
ε

3
+

ε

3
+

ε

3
= ε.

This show that ρ∆m(xs − x) −→ 0 as s −→ ∞. Hence, by Theorem 2.5(ii), we
have ‖xs − x‖ −→ 0 as s −→ ∞.

Theorem 2.7. The space C(p)(∆
m) has the property (H).

Proof. Let x ∈ S
(

C(p)(∆
m)
)

and (xs) ⊆ C(p)(∆
m) such that ‖xs‖ −→ 1 and

xs
w

−→ x as s −→ ∞. From Theorem 2.3(iii), we have ρ∆m(x) = 1, so it follows
from Theorem 2.5 (i) that ρ∆m(xs) −→ ρ∆m(x) as s −→ ∞. Since the mapping
pk : C(p)(∆

m) −→ R, defined by pk(y) = ∆my(k), is a continuous linear functional
on C(p)(∆

m), it follows that ∆mxs(k) −→ ∆mx(k) as s −→ ∞ for all k ∈ N. Thus,
we obtain by Lemma 2.6 that xs −→ x as s −→ ∞.
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generalized Cesàro sequence spaces, Internat. J. Math. Sci. 2 (2004) 91-97.

[14] N. Petrot, S. Suantai, Uniform Opial properties in generalized Cesàro se-
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Cesàro sequence spaces, Int. J. Math. Math. Sci. 57 (2003) 3599-3607.
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