JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 2217-3412, URL: http://ilirias.com/jma VOLUME 7 ISSUE 5(2016), PAGES 78-84.

ON (Δ^m, I) – LACUNARY STATISTICAL CONVERGENCE OF **ORDER** α

MIKAIL ET AND HACER SENGÜL

ABSTRACT. In this study, using the generalized difference operator Δ^m , we introduce the concepts of (Δ^m, I) –lacunary statistical convergence of order α and lacunary strong Δ_p^m -summability of order α of sequences and give some relations about these concepts.

1. INTRODUCTION

In 1951, Fast [10] introduced the notion of statistical convergence and Schoenberg [18] reintroduced independently in 1959. Later on Çolak [2], Fridy [11], Šalát [19], Tripathy [23] and another researchers have studied the concept from the sequence space point of view and linked with the Summability theory.

The notion of I-convergence is a generalization of the statistical convergence. Kostyrko, Šalát and Wilczyński [15] introduced the notion of I-convergence. Some further results connected with the notion of I-convergence can be found in ([4],[5], [9], [16], [20], [21]).

By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ such that $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$. Throught this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r . Recently lacunary sequences have been studied in ([1],[3],[8],[12],[13],[22]). A non-empty family $I \subseteq 2^{\mathbb{N}}$ is said to be an ideal of \mathbb{N} if $\phi \in I$, $A, B \in I$ implies

 $A \cup B \in I$ and $A \in I$, $B \subset A$ implies $B \in I$.

A non-empty family $F \subseteq 2^{\mathbb{N}}$ is said to be a filter of \mathbb{N} if $\phi \notin F, A, B \in F$ implies $A \cap B \in F$ and $A \in F$, $A \subset B$ implies $B \in F$.

If I is a proper ideal of \mathbb{N} (i.e., $\mathbb{N} \notin I$), then the family of sets

$$F(I) = \{ M \subset \mathbb{N} : \exists A \in I : M = \mathbb{N} \setminus A \}$$

is a filter of \mathbb{N} .

A proper ideal I is said to be admissible if $\{n\} \in I$ for each $n \in \mathbb{N}$.

Throughout this study, I will stand for a proper admissible ideal of \mathbb{N} and by a sequence we always mean a sequence of real numbers.

²⁰¹⁰ Mathematics Subject Classification. 40A05, 40C05, 46A45.

Key words and phrases. Difference sequence; Statistical convergence; Lacunary sequence; Cesàro summability; I-convergence.

^{©2016} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted June 21, 2016. Published October 5, 2016.

The notion of difference sequence spaces was introduced by Kızmaz [14] and it was generalized by Et et al. ([6], [7], [9], [17], [21]) such as

$$\Delta^{m}(X) = \left\{ x = (x_{k}) : (\Delta^{m} x_{k}) \in X \right\},\$$

where X is any sequence space, $m \in \mathbb{N}$, $\Delta^0 x = (x_k)$, $\Delta^m x = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$, and so $\Delta^m x_k = \sum_{i=0}^m (-1)^i {m \choose i} x_{k+i}$. If $x \in \Delta^m (X)$ then there exists one and only one $y = (y_k) \in X$ such that

$$x_{k} = \sum_{i=1}^{k-m} (-1)^{m} \binom{k-i-1}{m-1} y_{i} = \sum_{i=1}^{k} (-1)^{m} \binom{k+m-i-1}{m-1} y_{i-m},$$

 $y_{1-m} = y_{2-m} = \dots = y_0 = 0$, for sufficiently large k; for example, k > 2m. We use this truth to define in sequences (2.1), (2.2) and (2.3).

2. Main Results

In this section, we describe the concepts of (Δ^m, I) –lacunary statistical convergence of order α and lacunary strong Δ_p^m -summability of order α of sequences and give some relations about these concepts.

Definition 2.1. Let $\theta = (k_r)$ be a lacunary sequence and $\alpha \in (0,1]$ be a fixed real number. We say that the sequence $x = (x_k)$ is $S^{\alpha}_{\theta}(\Delta^m, I)$ -convergent (or (Δ^m, I) -lacunary statistically convergent sequences of order α) if there is a real number L such that

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \ge \delta \right\} \in I,$$

where $I_r = (k_{r-1}, k_r]$ and h_r^{α} denote the α th power $(h_r)^{\alpha}$ of h_r , that is $h^{\alpha} = (h_r^{\alpha}) = (h_1^{\alpha}, h_2^{\alpha}, ..., h_r^{\alpha}, ...)$. In this case we write $S_{\theta}^{\alpha}(\Delta^m, I) - \lim x_k = L$ or $x_k \to L(S_{\theta}^{\alpha}(\Delta^m, I))$. We will denote the set of all $S_{\theta}^{\alpha}(\Delta^m, I) - \text{convergent sequences by } S_{\theta}^{\alpha}(\Delta^m, I)$. If $\theta = (2^r)$, then we will write $S^{\alpha}(\Delta^m, I)$ in the place of $S_{\theta}^{\alpha}(\Delta^m, I)$ and if $\alpha = 1$ and $\theta = (2^r)$, then we will write $S(\Delta^m, I)$ in the place of $S_{\theta}^{\alpha}(\Delta^m, I)$.

Definition 2.2. Let $\theta = (k_r)$ be a lacunary sequence and $\alpha \in (0, 1]$ be a fixed real number. We say that the sequence $x = (x_k)$ is $N_{\theta}^{\alpha}(\Delta^m, I)$ -summable to L (or lacunary strongly Δ^m -summable sequence of order α) if, for any $\varepsilon > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |\Delta^m x_k - L| \ge \varepsilon \right\} \in I.$$

In this case we write $x_k \to L(N^{\alpha}_{\theta}(\Delta^m, I))$ and we will denote the set of all $N^{\alpha}_{\theta}(\Delta^m, I)$ -summable sequences by $N^{\alpha}_{\theta}(\Delta^m, I)$.

It can be shown that $S^{\alpha}_{\theta}(\Delta^m, I)$ - convergence is well defined for $0 < \alpha \leq 1$, but it is not well defined for $\alpha > 1$ in general.

The inclusion parts of the following three theorems are straightforward, so we omit these parts of their proofs.

Theorem 2.1. If $x_k \to L(S^{\alpha}_{\theta}(\Delta^m, I))$, then $x_k \to L(S^{\beta}_{\theta}(\Delta^m, I))$ and the inclusion is proper.

Proof. Define a sequence $x = (x_k)$ by

$$\Delta^m x_k = \begin{cases} k, & \text{if } k \text{ is square} \\ 0, & \text{otherwise} \end{cases}$$
(2.1)

Then $x \in S^{\beta}_{\theta}(\Delta^m, I)$ for $\frac{1}{2} < \beta \le 1$ but $x \notin S^{\alpha}_{\theta}(\Delta^m, I)$ for $0 < \alpha \le \frac{1}{2}$.

Theorem 2.2. If $x_k \to L(N_{\theta}^{\alpha}(\Delta^m, I))$, then $x_k \to L(N_{\theta}^{\beta}(\Delta^m, I))$ and the inclusion is proper.

Proof. Define a sequence $x = (x_k)$ by

$$\Delta^m x_k = \begin{cases} 1, & \text{if } k \text{ is square} \\ 0, & \text{otherwise} \end{cases}$$
(2.2)

Then
$$x \in N_{\theta}^{\beta}(\Delta^{m}, I)$$
 for $\frac{1}{2} < \beta \leq 1$ but $x \notin N_{\theta}^{\alpha}(\Delta^{m}, I)$ for $0 < \alpha \leq \frac{1}{2}$.

Theorem 2.3. If $x_k \to L(N^{\alpha}_{\theta}(\Delta^m, I))$, then $x_k \to L(S^{\alpha}_{\theta}(\Delta^m, I))$ and the inclusion is proper.

Proof. Define a sequence $x = (x_k)$ by

$$\Delta^m x_k = \begin{cases} \left[\sqrt{h_r}\right], & k = 1, 2, 3, \dots, \left[\sqrt{h_r}\right] \\ 0, & \text{otherwise} \end{cases}$$
(2.3)

Then we have for every $\varepsilon > 0$ and $\frac{1}{2} < \alpha \leq 1$,

$$\frac{1}{h_r^{\alpha}} |\{k \in I_r : |\Delta^m x_k - 0| \ge \varepsilon\}| \le \frac{\left[\sqrt{h_r}\right]}{h_r^{\alpha}},$$

and for any $\delta > 0$ we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \{k \in I_r : |\Delta^m x_k - 0| \ge \varepsilon\} \right| \ge \delta \right\} \subseteq \left\{r \in \mathbb{N} : \frac{\left[\sqrt{h_r}\right]}{h_r^{\alpha}} \ge \delta \right\}$$

and so $x_k \to 0(S^{\alpha}_{\theta}(\Delta^m, I))$ for $\frac{1}{2} < \alpha \leq 1$. On the other hand, for $0 < \alpha \leq 1$,

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |\Delta^m x_k - 0| = \frac{\left[\sqrt{h_r}\right] \left[\sqrt{h_r}\right]}{h_r^{\alpha}} \to \infty$$

and for $\alpha = 1$,

$$\frac{\left[\sqrt{h_r}\right]\left[\sqrt{h_r}\right]}{h_r^\alpha} \to 1.$$

Then we can write

$$\left\{r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |\Delta^m x_k - 0| \ge 1\right\} = \left\{r \in \mathbb{N} : \frac{\left[\sqrt{h_r}\right]\left[\sqrt{h_r}\right]}{h_r^{\alpha}} \ge 1\right\} = \{a, a+1, a+2, \ldots\} \in F(I)$$

for some $a \in \mathbb{N}$, since I is admissible. Thus $x_k \neq 0 \left(N_{\theta}^{\alpha} \left(\Delta^m, I \right) \right)$.

The proof of each of the following results is obvious, so we do not give the proof of theorems.

Theorem 2.4. If $\liminf_r q_r > 1$, then $x_k \to L(S^{\alpha}(\Delta^m, I))$ implies $x_k \to L(S^{\alpha}_{\theta}(\Delta^m, I))$.

80

Theorem 2.5. If $\lim_{r\to\infty} \inf \frac{h_r^{\alpha}}{k_r} > 0$, then $x_k \to L(S(\Delta^m, I))$ implies $x_k \to L(S_{\theta}^{\alpha}(\Delta^m, I))$.

Theorem 2.6. If $\limsup_{r} q_r < \infty$, then $x_k \to L(S_\theta(\Delta^m, I))$ implies $x_k \to L(S(\Delta^m, I))$.

Theorem 2.7. $S^{\alpha}_{\theta}(\Delta^m, I) \cap \ell_{\infty}(\Delta^m)$ is a closed subset of $\ell_{\infty}(\Delta^m)$ for $0 < \alpha \leq 1$.

Now let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$, and let $\alpha, \beta \in (0, 1]$ such that $0 < \alpha \leq \beta \leq 1$. Now we research inclusion connections between the sets of $S^{\alpha}_{\theta}(\Delta^m, I)$ -convergent sequences and $N^{\alpha}_{\theta}(\Delta^m, I)$ -summable sequences for different α 's and θ 's.

Theorem 2.8. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences and let $\alpha, \beta \in (0, 1]$ such that $0 < \alpha \le \beta \le 1$. (i) If

$$\lim_{r \to \infty} \inf \frac{h_r^{\alpha}}{\ell_r^{\beta}} > 0 \tag{2.4}$$

 $then \; S^{\beta}_{\theta'} \left(\Delta^m, I \right) \subseteq S^{\alpha}_{\theta} \left(\Delta^m, I \right),$

(ii) If

$$\lim_{r \to \infty} \frac{\ell_r}{h_r^\beta} = 1 \tag{2.5}$$

then $S^{\alpha}_{\theta}(\Delta^{m}, I) \subseteq S^{\beta}_{\theta'}(\Delta^{m}, I)$, where $I_{r} = (k_{r-1}, k_{r}]$, $J_{r} = (s_{r-1}, s_{r}]$, $h_{r} = k_{r} - k_{r-1}$, $\ell_{r} = s_{r} - s_{r-1}$.

Proof. (i) Assume that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and let (2.4) be satisfied. For given $\varepsilon > 0$ we have

$$\{k \in J_r : |\Delta^m x_k - L| \ge \varepsilon\} \supseteq \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon\},\$$

$$\frac{1}{\ell_r^\beta} \left| \{k \in J_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \ge \frac{h_r^\alpha}{\ell_r^\beta} \frac{1}{h_r^\alpha} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right|$$

and so

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r^{\alpha}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \ge \delta \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{\ell_r^{\beta}} \left| \{k \in J_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \ge \delta \frac{h_r^{\alpha}}{\ell_r^{\beta}} \right\} \in I$$

for all $r \in \mathbb{N}$. Now taking the limit as $r \to \infty$ in the last inequality and using (2.4) we obtain $S^{\beta}_{\theta'}(\Delta^m, I) \subseteq S^{\alpha}_{\theta}(\Delta^m, I)$.

(*ii*) Let $x \in S^{\alpha}_{\theta}(\Delta^m, I)$ and (2.5) be satisfied. Since $I_r \subset J_r$, for $\varepsilon > 0$ we may write

$$\begin{aligned} \frac{1}{\ell_r^{\beta}} \left| \{k \in J_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| &= \frac{1}{\ell_r^{\beta}} \left| \{s_{r-1} < k \le k_{r-1} : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &+ \frac{1}{\ell_r^{\beta}} \left| \{k_r < k \le s_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &+ \frac{1}{\ell_r^{\beta}} \left| \{k_{r-1} < k \le k_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &\le \frac{k_{r-1} - s_{r-1}}{\ell_r^{\beta}} + \frac{s_r - k_r}{\ell_r^{\beta}} + \frac{1}{\ell_r^{\beta}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &= \frac{\ell_r - h_r}{\ell_r^{\beta}} + \frac{1}{\ell_r^{\beta}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &\le \frac{\ell_r - h_r^{\beta}}{h_r^{\beta}} + \frac{1}{h_r^{\beta}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &\le \left(\frac{\ell_r}{h_r^{\beta}} - 1\right) + \frac{1}{h_r^{\alpha}} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \end{aligned}$$

and

$$\left\{r \in \mathbb{N}: \frac{1}{\ell_r^\beta} \left|\{k \in J_r: |\Delta^m x_k - L| \ge \varepsilon\}\right| \ge \delta\right\} \subseteq \left\{r \in \mathbb{N}: \frac{1}{h_r^\alpha} \left|\{k \in I_r: |\Delta^m x_k - L| \ge \varepsilon\}\right| \ge \delta\right\} \in I$$

for all $r \in \mathbb{N}$. Thus $S^{\alpha}_{\theta}(\Delta^m, I) \subseteq S^{\beta}_{\theta'}(\Delta^m, I)$.

Theorem 2.9. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$, α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$. Then we have

(i) If (2.4) holds then $N_{\theta'}^{\beta}(\Delta^m, I) \subset N_{\theta}^{\alpha}(\Delta^m, I)$, (ii) If (2.5) holds and $x \in \ell_{\infty}(\Delta^m)$ then $N_{\theta}^{\alpha}(\Delta^m, I) \subset N_{\theta'}^{\beta}(\Delta^m, I)$.

Proof. Omitted.

Theorem 2.10. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$, and let $\alpha, \beta \in (0, 1]$ such that $0 < \alpha \leq \beta \leq 1$. Then (i) Let (2.4) holds, if $x_k \to L(N_{\theta'}^{\beta}(\Delta^m, I))$, then $x_k \to L(S_{\theta}^{\alpha}(\Delta^m, I))$, (ii) Let (2.5) holds and $x = (x_k)$ be a Δ^m -bounded sequence, if $x_k \to L(S_{\theta}^{\alpha}(\Delta^m, I))$, then $x_k \to L(N_{\theta'}^{\beta}(\Delta^m, I))$.

Proof. i) Omitted.

82

т

 $(1 + C\alpha (Am, T))$ 1.

(ii) Assume that
$$S_{\theta}^{-}(\Delta^{m}, I) - \lim x_{k} = L$$
 and $x \in \Delta^{m}(\ell_{\infty})$. Then we may write

$$\frac{1}{\ell_{r}^{\beta}} \sum_{k \in J_{r}} |\Delta^{m}x_{k} - L| = \frac{1}{\ell_{r}^{\beta}} \sum_{k \in J_{r} - I_{r}} |\Delta^{m}x_{k} - L| + \frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}} |\Delta^{m}x_{k} - L|$$

$$\leq \left(\frac{\ell_{r} - h_{r}^{\beta}}{\ell_{r}^{\beta}}\right) M + \frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}} |\Delta^{m}x_{k} - L|$$

$$\leq \left(\frac{\ell_{r} - h_{r}^{\beta}}{\ell_{r}^{\beta}}\right) M + \frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}} |\Delta^{m}x_{k} - L|$$

$$\leq \left(\frac{\ell_{r}}{h_{r}^{\beta}} - 1\right) M + \frac{1}{h_{r}^{\beta}} \sum_{\substack{k \in I_{r} \\ |x_{k} - L| \ge \varepsilon}} |\Delta^{m}x_{k} - L| + \frac{1}{h_{r}^{\beta}} \sum_{\substack{k \in I_{r} \\ |x_{k} - L| \le \varepsilon}} |\Delta^{m}x_{k} - L|$$

$$\leq \left(\frac{\ell_{r}}{h_{r}^{\beta}} - 1\right) M + \frac{1}{h_{r}^{\beta}} \sum_{\substack{k \in I_{r} \\ |x_{k} - L| \ge \varepsilon}} |\Delta^{m}x_{k} - L| \ge \varepsilon\}| + \frac{\ell_{r}}{h_{r}^{\beta}}\varepsilon$$

 $1 - \Lambda m(\ell)$ (D)

and so

(...)

$$\left\{r \in \mathbb{N} : \frac{1}{\ell_r^\beta} \sum_{k \in J_r} |\Delta^m x_k - L| \ge \delta \right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r^\alpha} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \ge \frac{\delta}{M} \right\} \in I,$$

for all $r \in \mathbb{N}$. Using (2.5) we obtain that $N_{\theta'}^{\beta}(\Delta^m, I) - \lim x_k = L$, whenever $S_{\theta}^{\alpha}(\Delta^m, I) - \lim x_k = L$.

References

- N. L. Braha, A new class of sequences related to the l_p spaces defined by sequences of Orlicz functions, J. Inequal. Appl. 2011, Art. ID 539745, 10 pp.
- [2] R. Çolak, Statistical convergence of order α Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121–129.
- [3] G. Das, S. K. Mishra, Banach limits and lacunary strong almost convergence, J. Orissa Math. Soc. 2 (1983) 61-70.
- [4] P. Das, E. Savaş, S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24(9) (2011), 1509–1514.
- [5] P. Das, E. Savaş, On I-statistical and I-lacunary statistical convergence of order α, Bull. Iranian Math. Soc. 40(2) (2014), 459–472.
- [6] M. Et, H. Altinok, Y. Altin, On some generalized sequence spaces, Appl. Math. Comput. 154(1) (2004), 167–173.
- [7] M. Et, Generalized Cesaro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372-9376.
- [8] M. Et, H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28(8) (2014), 1593–1602.
- [9] M. Et, A. Alotaibi, S. A. Mohiuddine, On (Δ^m, I)-Statistical Convergence of Order α, The Scientific World Journal, Volume 2014, Article ID 535419, 5 pages.
- [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
- [11] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- [12] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978) 508-520.
- [13] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993) 43-51.
- [14] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
- [15] P. Kostyrko, T. Šalát, W. Wilczyński, *I-convergence*, Real Anal. Exchange 26 (2000/2001), 669-686.
- [16] P. Kostyrko, M. Mačaj, T. Šalát, M. Sleziak, *I-convergence and extremal I-limit points*, Math. Slovaca 55(4)(2005), 443-464.
- [17] M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, J. Inequal. Appl. 2007, Art. ID 86757, 6 pp.

۰.

- [18] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
- [19] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- [20] T. Šalát, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. Pure Appl. Math. 17 (2005), 45–54.
- [21] E. Savaş, M. Et, On $(\Delta_{\lambda}^{m}, I)$ -Statistical Convergence of Order α , Period. Math. Hungar. (2015).
- [22] H. Şengül, M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl Ed (2014), 34(2):473–482.
- [23] B. C. Tripathy, Matrix transformation between some classes of sequences, J. Math. Analysis and Appl. 206 (2) (1997), 448-450.

Mikail Et

DEPARTMENT OF MATHEMATICS, FIRAT UNIVERSITY 23119, ELAZIG, TURKEY *E-mail address*: mikailet680gmail.com

Hacer Şengül

DEPARTMENT OF MATHEMATICS, SHITT UNIVERSITY 56100, SHIT, TURKEY *E-mail address:* hacer.sengul@hotmail.com

84