Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11513/341
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.contributor.author | Atasoy, Ayşe Dilek | - |
dc.contributor.author | Babar, B. | - |
dc.contributor.author | Şahinkaya, Erkan | - |
dc.date.accessioned | 2019-06-19T10:33:40Z | - |
dc.date.available | 2019-06-19T10:33:40Z | - |
dc.date.issued | 2013 | - |
dc.identifier.other | DOI 10.1007/s10230-013-0232-x | - |
dc.identifier.uri | http://hdl.handle.net/11513/341 | - |
dc.description.abstract | The performance of fluidized bed reactors treating synthetic acid mine drainage were predicted using an artificial neural network (ANN). The developed model gave satisfactory fits to the experimentally obtained sulfate, COD, alkalinity, and sulfide data; R-values were within 0.92 and 0.98. ANN can be effectively used to predict the performance of these complex systems and, with the proposed model-based applications, it is possible to reduce operational costs and risks. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mine Water Environ | en_US |
dc.subject | Metal removal | en_US |
dc.subject | Mine water | en_US |
dc.subject | Reactor modeling | en_US |
dc.subject | Sulfate reduction | en_US |
dc.title | Artificial Neural Network Prediction of the Performance of Upflow and Downflow Fluidized Bed Reactors Treating Acidic Mine Drainage Water | en_US |
dc.type | Article | en_US |
Koleksiyonlarda Görünür: | Çevre Mühendisliği |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
Artificial Neural Network Prediction of the Performance-Dilek Atasoy.pdf | 554.58 kB | Adobe PDF | Göster/Aç |
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.