Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11513/3401
Başlık: DERİN ÖĞRENME YÖNTEMİ İLE İYONOSFERİK TEC DEĞİŞİMLERİNİN TAHMİN EDİLMESİ
Yazarlar: DEMİRYEGE, İSMAİL
Anahtar kelimeler: Derin öğrenme, TEC, uzun kısa süreli bellek, ADAM, SGDM
Yayın Tarihi: 2021
Özet: İyonosfer tabakası, Küresel Konumlandırma Sistemi (GPS) uydularının radyo dalgalarının frekanslarına bağlı olarak zaman gecikmesi oluşturan aktif bir ortam olarak tanımlanmaktadır. İyonosferik çalışmaların birçoğu, GPS sinyallerinden elde edilen toplam elektron içeriği (TEC) değişiklikleri kullanılarak gerçekleştirilir. Günümüzde iyonosferin fiziksel yapısı üzerine yapılan çalışmalar, uzay iklimi koşullarının tahmini, konumlandırma, navigasyon ve iletişim gibi birçok alanda devam etmektedir. Bu çalışmanın amacı, iyonosferik TEC’nin kestirimi için derin öğrenmenin bir çeşidi olan uzun kısa vadeli bellek yönteminin en uygun ağ modelini oluşturmaktır. Tasarlanan model ve ilgili özellikleri, MATLAB® ortamında özelleştirilmiş Derin Öğrenme Araç Kutusu kullanılarak hazırlanmıştır. Bu çalışmada, Türkiye’nin farklı bölgelerinde bulunan ve Türkiye Ulusal Sabit GPS Ağı (TUSAGA-Aktif)’na kayıtlı olan SURF, GEME, HEND ve ANTL isimli istasyonların 2016-2019 yılları arasında iki saat çözünürlüklü GPS gözlemleri kullanılmıştır. 2019 yılının ilk altı ayı için iyonosferik TEC değişimlerini tahmin etmeyi amaçlayan bu çalışmada, her bir istasyon için optimum parametreler araştırılmıştır. Tahmini yapılan TEC’lerin, Momentumlu Stokastik Gradyan İnişi (SGDM) ve Uyarlanabilir Moment (ADAM) optimizasyonlarıyla karesel ortalama hataları (KOH) elde edilmiş ve birbirleriyle kıyaslanmıştır
URI: http://hdl.handle.net/11513/3401
Koleksiyonlarda Görünür:Fen Bilimleri Enstitüsü

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
CD-PDF-FORMATI-İSMAİL-DEMİRYEGE.pdf2.14 MBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.