Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11513/3178
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorErcan, Muzaffer-
dc.date.accessioned2023-06-21T08:40:47Z-
dc.date.available2023-06-21T08:40:47Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11513/3178-
dc.description.abstractBu tez altı bölümden oluşmaktadır. Birinci bölümde, çalışmamızın literatür taraması verilmiştir. İkinci bölümde ise bu tezde kullanılan temel tanım ve teoremler sunulmuştur. Üçüncü bölümde, ilk olarak Bernoulli alt denklem fonksiyon metodu (BSEFM)’nin temel özellikleri verilmiştir. İkinci olarak Geliştirilmiş Bernoulli alt denklem fonksiyon metodu (IBSEFM) ayrıntılı bir şekilde sunulmuştur. Dördüncü bölümde ise BSEFM ve IBSEFM’unun modifiye edilmiş alpha denklemine ve Gross-Pitaevskii denklemine uygulamaları ayrı ayrı yapılmıştır. Elde edilen çözümlerin grafikleri parametrelerin uygun değerlerine göre çizilmiştir. Beşinci bölümde bu tezde elde edilen verilerle ilgili sonuçlar verilmiştir. Altıncı bölümde ise bu tezde kullanılan referanslar sunulmuştur.en_US
dc.language.isotren_US
dc.subjectModifiye edilmiş alpha denklemi, Gross-Pitaevskii denklemi, Bernoulli alt denklem fonksiyon metodu, geliştirilmiş Bernoulli alt denklem fonksiyon metodu, iki boyutlu ve üç boyutlu grafikler.en_US
dc.titleMATEMATİKSEL FİZİKTE ORTAYA ÇIKAN BAZI LİNEER OLMAYAN KISMİ DİFERANSİYEL DENKLEMLERİN ÜSTEL VE HİPERBOLİK ÖZELLİKLERİNİN İNCELENMESİen_US
dc.typeThesisen_US
Koleksiyonlarda Görünür:Fen Bilimleri Enstitüsü

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
676000.pdf3.78 MBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.