Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11513/2708
Başlık: MODELING OF PV PANEL AND INVESTIGATION OF MPPT METHODS FOR GRID-CONNECTED PV SYSTEM
Yazarlar: Rasheed, Mohammed Mahmood Rasheed
Anahtar kelimeler: PV paneli, DC-DC Flyback dönüştürücü, MGNİ, Yapay sinir ağı (YSA), Şebekeye bağlı PV sistemi.
Yayın Tarihi: 2022
Özet: This thesis presents an investigation of the Maximum Power Point Tracking (MPPT) approach for solar power systems utilizing a DC-DC flyback converter operated by a Neural Network (NN) for a gridconnected PV system. MATLAB/ Simulink is used to model and simulate the entire system, then the NN framework is used to train the NN. The outcomes of the proposed MPPT controller are then compared to a perturb and observe (P&O) MPPT algorithm. The parameters Vpv, Ipv, Ppv, and voltage of the DC link of the PV array also inverter voltage and inverter current are taken into account in this thesis research. The modeling and simulation of the indicated MPPT approaches are simulated on a 10.457-kWP PV array that forms as a grid-connected powers generator. According to the findings, the recommended NN-based MPPT controller performs better and produces good results in terms of Maximum Power Point (MPP) under a variety of weather conditions. It was also discovered that intelligent-based MPPT algorithm has lower power rippling, high-speed response, harmonics reduction, and quick outcomes than traditional P&O algorithms.
URI: http://hdl.handle.net/11513/2708
Koleksiyonlarda Görünür:Fen Bilimleri Enstitüsü

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
733635.pdf2.44 MBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.