Please use this identifier to cite or link to this item: http://hdl.handle.net/11513/198
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞengül, Hacer-
dc.contributor.authorEt, Mikail-
dc.date.accessioned2019-06-12T10:20:07Z-
dc.date.available2019-06-12T10:20:07Z-
dc.date.issued2017-
dc.identifier.issn1686-0209-
dc.identifier.urihttp://hdl.handle.net/11513/198-
dc.description.abstract: In this paper, we define the generalized Ces`aro difference sequence space C(p)(∆m) and consider it equipped with the Luxemburg norm under which it is a Banach space and we show that in the space C(p)(∆m) every weakly convergent sequence on the unit sphere converges is the norm, where p = (pn) is a bounded sequence of positive real numbers with pn > 1 for all n ∈ Nen_US
dc.language.isoenen_US
dc.publisherThai Journal of Mathematics (Thai)en_US
dc.subjectCes`aro difference sequence space; Luxemburg norm; extreme point; convex modular; property (H).en_US
dc.titleSome Geometric Properties of Generalized Difference Ces`aro Sequence Spacesen_US
dc.typeArticleen_US
Appears in Collections:Matematik ve Fen Bilimleri Eğitimi Bölümü

Files in This Item:
File Description SizeFormat 
Thai 2017.pdf182.37 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.