Please use this identifier to cite or link to this item: http://hdl.handle.net/11513/193
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞengül, Hacer-
dc.date.accessioned2019-06-12T08:15:38Z-
dc.date.available2019-06-12T08:15:38Z-
dc.date.issued2018-
dc.identifier.issn2217-4303-
dc.identifier.urihttp://hdl.handle.net/11513/193-
dc.description.abstractThe idea of asymptotically equivalent sequences and asymptotic regular matrices was introduced by Marouf [ Marouf, M. Asymptotic equivalence and summability, Int. J. Math. Sci. 16(4) 755-762 (1993) ] and Patterson [ Patterson, RF. On asymptotically statistically equivalent sequences, Demonstr. Math. 36(1), 149-153 (2003) ] extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. In this paper we introduce the concepts of Wijsman asymptotically I−lacunary statistical equivalence of order (η, µ) and strongly asymptotically I−lacunary equivalence of order (η, µ) of sequences of sets and investigated between their relationship.en_US
dc.language.isoenen_US
dc.publisherJournal of Inequalities and Special Functions (JIASF)en_US
dc.subjectI−convergence; asymptotical equivalent; lacunary sequence; I−statistical convergence; Wijsman convergence; sequences of sets.en_US
dc.titleON WIJSMAN I− LACUNARY STATISTICAL EQUIVALENCE OF ORDER (η, µ)en_US
dc.typeArticleen_US
Appears in Collections:Matematik ve Fen Bilimleri Eğitimi Bölümü

Files in This Item:
File Description SizeFormat 
JIASF-2018.pdf354.16 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.