Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://hdl.handle.net/11513/1834
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorBARUT, DUYGU-
dc.date.accessioned2019-09-18T07:58:08Z-
dc.date.available2019-09-18T07:58:08Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11513/1834-
dc.description.abstractGrafın Laplacian spektral yarıçapı; başta matematik olmak üzere, kombinatöryel optimizasyon, iletişim ağları, teorik kimya, teorik fizik, kuantum mekaniği gibi çeşitli alanlarda kullanılmaktadır. Grafın Laplacian matrisinin ikinci en küçük öz değeri ise grafın bağlantısallığı hakkında bilgi vermektedir. Grafın Laplacian öz değerlerinin önemi göz önüne alındığından bu çalışmada basit ve sonlu grafların Laplacian spektral yarıçapı için elde edilmiş üst sınırları içeren çalışmalar incelenmiş ve çalışmalar bir araya getirilerek özellikle spektral graf teorisi alanında çalışan araştırmacılara detaylı bir kaynak sunulmuştur. Laplacian spectral radius of a graph is mainly related to mathematics, it is used in various fields such as combinatorial optimization, communication networks, theoretical chemistry, theoretical physics and quantum mechanics. The second smallest eigenvalue of the Laplacian matrix of a graph gives information about the connectivity of a graph. Since the importance of Laplacian eigenvalues is taken into consideration, in this study upper bound works for the Laplacian spectral radius of simple and finite graphs are examined and these works are brought together, thus a detailed source presented to the researchers working especially in the field of spectral graph theory.en_US
dc.language.isotren_US
dc.subjectMatematik = Mathematicsen_US
dc.titleGrafın Laplacian spektral yarıçapı için sınırlar / Bounds for laplacian spectral radius of graphen_US
dc.typeThesisen_US
Koleksiyonlarda Görünür:Fen Bilimleri Enstitüsü

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
540013.pdf1.51 MBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.