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ABSTRACT

DOCTORATE THESIS

SURVEY AND MAPPING OF SOIL FERTILITY STATUS OF SOME ARABLE LANDS IN
DUHOK PROVINCE, IRAQ
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INSTITUTE OF GRADUATE EDUCATION

DEPARTMENT OF SOIL SCIENCE AND PLANT NUTRITION

Thesis Supervisor: Prof. Dr.  Ali VOLKAN BİLGİLİ
 Year:2025, Page : 102

Soil fertility evaluation is crucial for long-term agricultural management and land-use planning,
particularly in dry and semi-arid countries. The fertility condition of agricultural soils in Bardarash
and Semel districts, Duhok Province, northern Iraq, is assessed using an integrated method that
includes field sampling, laboratory analysis, geostatistics, and machine learning. A total of 105
composite soil samples (52 from Bardarash and 53 from Semel) were analyzed for 19 key
physicochemical attributes, including soil texture, bulk density, pH, electrical conductivity, organic
matter (OM), calcium carbonate (CaCO₃), cation exchange capacity (CEC), and available macro and
micronutrients. To create the Soil Fertility Index (SFI), two different weighting schemes were used:
Analytical Hierarchy Process (AHP) and Principal Component Analysis (PCA) for Bardarash and
integrated with fuzzy logic for Semel. The normalized soil characteristics were weighted and
aggregated to provide SFI values, which were then modeled using several prediction algorithms. SFI
prediction in Bardarash was achieved using regression-based machine learning models with field
spectroradiometer data as input factors. Semel, on the other hand, used machine learning techniques
using remote sensing-derived indicators like as NDVI and soil indices as predictors to perform SFI
classification. Gradient boosting regression (GBR) had the strongest predictive reliability in
Bardarash, whereas classification-based techniques produced robust findings in Semel. Model
performance was tested using R², MAE, MSE, and RMSE metrics. Soil fertility is mostly limited by
OM depletion, poor phosphate availability, excessive CaCO₃ concentration, and insufficient CEC,
according to the investigation. Additionally, spatial mapping revealed that approximately 58% of the
soils in Semel and about 70% in Bardarash were classified as having low to very low fertility levels.
In order to promote precision agriculture and sustainable land management practices in northern Iraq,
these findings emphasize the significance of combining multivariate weighting approaches with
geospatial machine learning and remote sensing to create precise, site-specific soil fertility maps.

KEYWORDS: Iraq, PCA, NDVI, Toprak verimlilik indeksi, Machine learning (Ml), Fuzzylogic
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ABSTRACT

DOKTORA TEZİ

IRAK’ıN DUHOK İLINDE SEçILI TARıM ALANLARıNıN TOPRAK VERIMLILIK
DURUMUNUN İNCELENMESI VE MEKâNSAL HARITALANDıRıLMASı

MOYASSAR ABDULLAH SALIH SALIH

HARRAN ÜNİVERSİTESİ
LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

TOPRAK BİLİMİ VE BİTKİ BESLEME BÖLÜMÜ

Tez Danışmanı:Prof. Dr.  Ali VOLKAN BİLGİLİ
 Yıl:2025, Sayfa :  102

Toprak verimliliğinin değerlendirilmesi, özellikle kurak ve yarı kurak ülkelerde uzun vadeli tarımsal
yönetim ve arazi kullanım planlaması için kritik öneme sahiptir. Irak’ın kuzeyindeki Duhok iline bağlı
Bardarash ve Semel ilçelerindeki tarım topraklarının verimlilik durumu; arazi örneklemesi,
laboratuvar analizleri, jeoistatistik ve makine öğrenmesini içeren bütünleşik bir yöntemle
değerlendirilmiştir. Toplam 105 kompozit toprak örneği (52 Bardarash’tan, 53 Semel’den) alınmış ve
19 temel fizikokimyasal özellik (toprak tekstürü, hacim ağırlığı, pH, elektriksel iletkenlik, organik
madde (OM), kalsiyum karbonat (CaCO₃), katyon değişim kapasitesi (KDK) ve mevcut makro ile
mikro besin elementleri) analiz edilmiştir. Toprak Verimlilik İndeksi (SFI) oluşturmak için iki farklı
ağırlıklandırma yöntemi uygulanmıştır: Bardarash için Analitik Hiyerarşi Prosesi (AHP) ve Temel
Bileşen Analizi (PCA), Semel için ise bulanık mantık ile bütünleştirilmiş yöntem. Normalize edilmiş
toprak özellikleri ağırlıklandırılarak toplanmış ve SFI değerleri elde edilmiştir. Bu değerler daha sonra
çeşitli tahmin algoritmaları ile modellenmiştir. Bardarash’ta SFI tahmini, alan spektro-radyometre
verilerinin giriş faktörü olarak kullanıldığı regresyon tabanlı makine öğrenmesi modelleri ile
yapılmıştır. Semel’de ise NDVI ve toprak indisleri gibi uzaktan algılama kaynaklı göstergeleri
kullanarak makine öğrenmesi ile sınıflandırma uygulanmıştır. Bardarash’ta Gradient Boosting
Regression (GBR) en güçlü tahmin doğruluğunu sağlamış, Semel’de ise sınıflandırma tabanlı
teknikler güvenilir sonuçlar vermiştir. Modellerin performansı R², MAE, MSE ve RMSE ölçütleriyle
test edilmiştir. Araştırmaya göre toprak verimliliği büyük ölçüde OM eksikliği, düşük fosfat
bulunurluğu, yüksek CaCO₃ konsantrasyonu ve yetersiz CEC nedeniyle sınırlanmaktadır. Ayrıca,
mekânsal haritalama, Semel’deki toprakların yaklaşık %58’inin ve Bardarash’taki toprakların yaklaşık
%70’inin düşük ile çok düşük verimlilik düzeylerine sahip olarak sınıflandırıldığını ortaya koymuştur.
Bu bulgular, Irak’ın kuzeyinde hassas tarım ve sürdürülebilir arazi yönetimi uygulamalarını teşvik
etmek için, çok değişkenli ağırlıklandırma yaklaşımlarının jeo-uzamsal makine öğrenmesi ve uzaktan
algılama ile bütünleştirilerek kesin ve saha-özel toprak verimlilik haritalarının üretilmesinin önemini
vurgulamaktadır.

ANAHTAR KELİMELER: Irak, PCA, NDVI, Soil fertility index , Makine öğrenmesi, Bulanık
mantık
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1. INTRODUCTION

1.1. Background

Soil is a dynamic and diverse natural system made up of minerals, organic
matter (OM), water, air, and biota. It regulates biogeochemical cycles and facilitates
agricultural production through its interactions (Joshi et al., 2009; Flores-Magdaleno
et al., 2011). The sustainable maintenance of soil fertility is a critical objective as the
global food demand increases, with the world population anticipated to reach 9
billion by 2050 (FAO, 2017). This resource is essential for food security and rural
livelihoods. In arid and semi-arid regions with low tolerance to degradation,
agricultural systems and long-term production are being jeopardized by nutrient
depletion and inadequate land management.

Bekele and Hudnall (2006) assert that soil fertility surveys and maps provide
indispensable information for the evaluation of crop suitability, site-specific nutrient
management, and the development of evidence-based policy. A variety of interacting
physical, chemical, and biological properties determine soil fertility, which is the
soil's capacity to generate critical nutrients in the proportions and balance necessary
for crops under favorable environmental conditions. The spatial variability of
nutrient availability and uptake is influenced by both intrinsic soil-forming factors
and extrinsic management practices, such as texture, bulk density, pH, electrical
conductivity (EC), organic matter (OM), calcium carbonate (CaCO3), and cation
exchange capacity (CEC) (Cambardella and Karlen, 1999; Dhanve et al., 2018).
Uniform fertilizer recommendations are impeded by the high level of geographical
variability, but it also motivates the development of precision techniques that adjust
inputs to specific soil conditions (Goovaerts, 1998).

In order to synthesis complicated information and provide spatially explicit
fertility products for decision support, modern soil fertility evaluation increasingly
makes use of multivariate statistics, geostatistics, remote sensing, and machine
learning (Kumawat and Gehlot, 2020; Musarhad et al., 2023). The ability to convert
laboratory diagnosis into geographical maps and management recommendations is
enhanced by these integrated digital technologies. The lack of region-specific
calibration, the variability of weighting schemes for multi-indicator fertility indices,
and the inconsistent availability of ground spectral and remote sensing data,
however, continue to limit their use and make it uneven across regions (Tematio et
al., 2011; Tsozué et al., 2019).

1
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This thesis covers gaps in the context of northern Iraq (Duhok Province) by

integrating traditional laboratory investigations with modern weighting methods,
field spectroscopy, remote sensing indices, and machine learning. A total of 105
composite soil samples (52 from Bardarash and 53 from Semel) were examined for
19 physicochemical properties in order to create a Soil Fertility Index. To account for
regional differences in indicator importance, two complementary weighting
frameworks were used: Principal Component Analysis (PCA) to generate objective
statistical weights for Bardarash, and an Analytical Hierarchy Process (AHP)
integrated with fuzzy logic to incorporate expert judgement and handle uncertainty
for Semel. Normalized indicator values were multiplied by their appropriate weights
to calculate site Soil Fertility Index (SFI) scores. Spatial modeling and prediction
combined ordinary kriging (OK) with machine learning approaches such as Random
Forest (RF) and Gradient Boosting Regression (GBR), with input predictors tailored
to each region: field spectroradiometer measurements were used for regression-based
SFI prediction in Bardarash, whereas Normalized Difference Vegetation Index
(NDVI) and remote sensing-derived soil indices were used as predictors for
classification-based SFI mapping in Semel.

This study develops robust, site-adapted fertility maps and decision-relevant
diagnostics for precision nutrient management by explicitly combining dual
weighting methods, ground spectroscopy, remote sensing indices, geostatistics, and
current machine learning. An integrated framework is especially important in dry and
semi-arid agroecosystems in northern Iraq, where insufficient baseline knowledge
and considerable spatial variability impede efficient soil management.

1.2. Scope of the study

The main tasks for this study include;

Soil samples in all key agricultural locations, the number of locations for soil
sampling per 4 km2 will depend on the soil variability within the study areas.

Determine levels of the major plant nutrient elements (N, P, K, Ca, Mg) and
essential plant micronutrients (Fe, Cu, Zn, Mn, B, etc.), OM, pH, EC, CaCO3 and
CEC.

Classify the soils in selected locations into good soil fertility and degraded
soils (in cultivated and non-cultivated areas).

2
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Develop a comprehensive soil fertility map for more than 100 villages under
the study area in Bardarash and Semel districts in Duhok.

Draw recommendations on how to improve soil fertility in degraded areas and
on how to maintain soil fertility in non-degraded areas.

Determine the level of appropriateness of type of fertilizer materials already
in use by smallholder famers including their application methods/rates in Bardarash
and Semel.

Identify the major risks associated with environmental hazards for each of the
fertilizer materials already in use and recommend risk mitigation measures.

Document best practices in sustainable soil fertility management already
adopted in the study areas.

Identify the appropriate conservation agricultural practices for each village.

1.3. Study objectives

The main objective of this research is to use an integrated framework that
integrates laboratory investigations, geostatistics, machine learning, and remote
sensing to evaluate, map, and predict the fertility condition of arable soils in the
Bardarash and Semel districts of Duhok Province, northern Iraq. In order to
accomplish this goal, the study aims to accomplish the following particular goals:

Evaluate the overall fertility status of the study area through comprehensive
laboratory analysis of key soil physical and chemical properties.

Develop high-resolution soil fertility maps using Geographic Information
Systems (GIS) and digital soil mapping techniques to support precision agriculture
and sustainable land management.

Quantify and model the spatial variability of soil fertility parameters using
geostatistical methods based on OK.

Apply advanced machine learning algorithms such as RF and GBR, and
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Support Vector Machine (SVM) to predict the SFI, assessing the predictive
capability of Visible and Near-Infrared (VNIR) spectroradiometry, remote sensing
indices (e.g., NDVI, soil indices), and laboratory-based soil analyses.

Formulate region-specific recommendations for soil fertility improvement and
sustainable management tailored to the agroecological and socioeconomic conditions
of the study area.

This study, conducted in Bardarash and Semel districts of Duhok Province,
represents the first systematic soil fertility state survey and mapping effort in Iraq.
The results are expected to serve as a reference framework for extending similar
assessments across the country, thereby contributing to national strategies for
sustainable agriculture and food security.
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2. PREVIOUS STUDIES

2.1. Literature review

The assessment of soil fertility is the fundamental decision-making instrument
for the effective planning of a certain land use system (Worku and Hunduma, 2020).
From an agricultural standpoint, soil value has historically been assessed based on its
productivity, which is defined as the soil's ability to yield a plant or series of plants
under specific management approaches (Pierce, 1994). Soil productivity
encompasses two dimensions: the intrinsic productivity of the soil and its reaction to
regulated inputs (Hillel and Hatfield, 2005). The ongoing cultivation and persistent
extraction of nutrients by plants, with minimal or no replenishment, may heighten the
likelihood of future nutrient-related plant stress and yield reduction (Dobermann et
al., 2022). Both excessive and insufficient use of chemical fertilizers adversely
affects crop output, while excessive use contributes to heightened environmental
contamination (Savci, 2012).

2.1.1. Fertility status of soil

The appropriate application of fertilizer is essential for the sustainability of
farms and the preservation of the environment, as it is one of the most expensive
commodities in agriculture (Rawal et al., 2018). In contrast, the environment is
polluted and these limited, costly resources are wasted when fertilizers are applied in
an excessive or imbalanced manner (Kumawat and Gehlot, 2020). The current
nutrient status of the soils is not taken into account by farmers when applying high or
very low fertilizer dosages, as they are unable to implement the developed norms due
to a lack of knowledge and institutional incapacity (Rawal et al. (2018). In recent
years, the response (production) efficiency of chemical fertilizer nutrients has
significantly decreased under intensive agriculture due to the low efficiency of other
inputs and the imbalanced and inadequate use of fertilizers (Meena et al., 2006).
Consequently, in order to make an informed decision regarding the type and quantity
of fertilizer to be applied, producers must be cognizant of the nature and severity of
the nutrient issues (Rashid and Ryan, 2004). The fertilizer recommendation can be
determined by the profitability and fertility status of the soil. Soil testing is a valuable
tool for recommending the appropriate quantities and types of fertilizer and other
amendments to enhance and profitably produce crops, as it provides information
about the physico-chemical characteristics of the soil. The primary factor in the
preservation of soil fertility is the understanding of the physico-chemical properties
of the soil.
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2.1.2. Soil physical properties

The physical properties of soil are those that govern the movement of water,
solutes, oxygen, and heat within the soil. It is the process of determining the soil's
adaptability to cultivation and the extent of biological activity that can be sustained.
Texture, structure, color, depth, temperature, bulk density, and soil moisture content
(SMC) are the primary physical soil properties (Sanchez, 1977). The physical
properties of any soil are subject to change as a result of changes in its soil fertility
management, including the intensity of cultivation, crop rotation, crop residue
management, farmyard manure application, and the nature of the land under
cultivation. This results in a decrease in soil permeability and an increased
susceptibility to runoff and erosion losses. Mulugeta and Wondwosen (2019) assert
that the fertility and productivity of soils are significantly influenced by the soil's
physical properties, which include soil aeration and moisture-holding capacity. The
concepts of some of the primary physical properties of soil will be discussed below,
as we previously mentioned.

2.1.3. Soil texture

One of the soil's most critical attributes is its texture. It influences numerous
soil functions and physical properties, including infiltration, drainage, aeration, soil
organic carbon (SOC) content, pH buffering, and porosity (Akpa et al., 2014). It is
classified into various textural classes, including sandy, loamy, and clay soils, as well
as several intermediate classes, based on the relative proportions of soil
components. The large pore spaces between particles and low surface area of sand
particles create favorable conditions for root growth, soil aeration, and the drainage
of surplus water, despite their limited capacity to retain water, retain nutrients, and
provide a low SOC. In contrast, the Clay particles have a significantly greater
capacity to retain water and nutrients due to the numerous medium and small pores.
However, soil aeration is restricted (Jones and Jacobsen, 2005).

Loamy soils, such as sandy or silty loam, are generally the most optimal for
cropping due to their intermediate properties (Verchot et al., 2007). The clay and silt
content of soils affects their ability to retain organic carbon (Hassink, 1997; Bationo
et al., 2007). The elevated surface areas and small pores of soils that are primarily
composed of clay prevent water from draining freely. Fine-textured soils are capable
of retaining nutrients due to their high surface area, which provides nutrients with
numerous binding sites. The second reason is that clays are frequently composed of
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minerals with high net negative charges on their surfaces (Jones and Jacobsen, 2005).
The proportions of clay and sand particles have been employed to develop
pedotransfer functions that estimate challenging soil properties, including bulk
density, hydraulic conductivity, and water holding capacity (Minasny and
Hartemink, 2011). The suitability of the soil for a specific use and management,
waste disposal, and water management is determined by its texture (Thompson et al.,
2012).

Soil texture is employed in soil taxonomy to differentiate soil orders (e.g.,
Vertisols or Alfisols) and is employed up to the family level of particle-size classes
(Soil Survey Staff, 2010). Moreover, soil texture is employed to diagnose certain
critical epipedons, particularly those associated with the argillic, natric, and kandic
horizons (Bockheim and Hartemink, 2013). Despite the significance, there is a
scarcity of information on soil texture, particularly the particle-size fractions at the
resolution necessary for environmental modeling (Scull et al., 2005). Quantitative
and continuous soil attributes are necessary in modeling, as opposed to taxonomic
soil classes (Gessler et al., 1996). Nevertheless, the majority of soil maps are
generated as discrete class surface maps, which fail to account for the continuous
variability of soil attributes across space and depth (Adhikari et al., 2013).

2.1.4. Soil color

The color is one of the most valuable characteristics for distinguishing and
identifying soils. It is frequently the most significant and readily apparent
characteristic of the soil. Consequently, its accurate determination is crucial in
numerous soil studies (Torrent and Barrón, 1993). Mineral composition, element
concentration, OM, and SMC all contribute to soil color. The surface pigment, which
is typically a reflection of the processes that are at play during soil formation, may
also be indicative of other factors, such as excess salinity or erosion (Shields et al.,
1966).

Soil pigments are employed to infer pedogenic processes in soils. OM, Fe,
and Mn are the primary pigmenting agents in soils, with Mn being less prevalent.
The matrix color is the prevalent color by volume when a soil horizon contains more
than one color. (Owens and Rutledge, 2005). The Munsell Soil Color Charts are the
most well-known to pedologists, and they are typically used to visually compare a
soil sample with the fragments of standard color charts in the field (Munsell, 1975).
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In general, soil color is influenced by two factors: the type of iron compounds

and humus (organic material). The soil is given a dark brown, almost black,
appearance by the humus. Iron is a significant factor in the color of soil, particularly
in weathered forms (Table 2.1). The color and appearance of soil are also influenced
by a variety of minerals and ions, including calcium, aluminum, carbonates, and
gypsums.

Table 2.1.  . The typical oxidation states of iron (Fe) in soils and the corresponding
colors they impart (Kalev and Toor, 2018).

  Form   Color

  Iron (III) oxide (Fe2O3)   Red

  Iron (II) oxide (FeO)   Gray

  Iron (III) hydroxide (Fe (OH)3)   Yellow

Soil is composed of two or more strata with unique characteristics and
properties, which are referred to as horizons, and is formed in a surface-downward
sequence. The accumulation of OM is represented by the uppermost stratum, which
is known as the O horizon. The A horizon, which is directly beneath it, is typically
characterized by a dark hue due to its humus enrichment.

2.1.5. Bulk density

The bulk density is the ratio of the mass of oven-dried soil to its bulk volume,
which encompasses the volume of the particles and the cavities (pore space) between
the particles. An indicator of limited soil porosity and soil compaction is a high bulk
density. It may result in the restriction of root growth and the inefficient movement
of oxygen and water through the soil (Hillel, 2012; McKenzie et al., 2004; Soane,
1990). It is susceptible to the effects of farming systems and can provide information
on critical soil processes and productivity that are crucial for plant growth, including
soil infiltration rooting depth/restrictions, plant nutrient availability, soil
microorganism activity, water holding capacity (WHC) for plants, soil water
movement, and aeration (Arvidsson, 1999; Chaudhari et al., 2013).

Arshad et al. (1997) also employ bulk density to express soil physical,
chemical, and biological measurements on a volumetric basis for the purpose of
assessing soil quality and comparing management systems. An increase in moisture
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content results in a decrease in air-filled pores, as the pore space can be filled with
either water or air, and there is an inverse relationship between these two parameters
(Shand, 2007).

Bulk density of soil varies widely with soil texture and structure (Hunt and
Gilkes, 1992). Bulk density values of fine texture soils (clay) commonly ranged from
1.0 to 1.6 Mg m-3, while those of coarse texture soils (sand) ranged from about 1.3
to 1.8 Mg m-3. Organic soils have a low bulk density; it may range between 0.4 - 0.8
Mg m-3 according to what was stated in Rekani et al. (2022).

2.1.6. Soil moisture content (SMC)

Soil moisture content (SMC) has quite a significant influence on the
agricultural, geological, and hydrological behavior of the soil mass (Mittelbach et al.,
2012; Jackson et al., 2008; Clevers et al., 2008). The Mechanical properties of the
soil, such as cracking, swelling, shrinkage, and density, are dependent on the soil
moisture content (Schwartz et al., 2008). Additionally, it is essential for the
preservation of biodiversity, the stabilization of natural ecosystems, and the
promotion of plant development (Alwis and Grattan, 2013).

According to Das and Sobhan (1990), the application of sufficient and
opportune moisture for irrigation is crucial for crop production, contingent upon the
soil-moisture-plant environment. Consequently, the assessment of soil moisture
content is of paramount importance in the agricultural sector. In conclusion, the
moisture content of soil has a substantial impact on its physical, chemical,
mineralogical, mechanical, geotechnical, hydrological, and biological characteristics.
Given this, previous researchers have devised a variety of methods for determining
soil moisture, including thermogravimetric neutron scattering, soil resistivity, and
dielectric techniques such as capacitance, frequency domain reflectometry, and time
domain reflectometry (Fityus, et al., 2011; Gaskin and Miller, 1996).

2.2. Chemical properties of soil

2.2.1. Organic matter (OM)

The majority of soils are composed of minerals; however, their topsoil
contains OM, which is defined as the accumulation of plant and animal residues at
different phases of decomposition, cells and tissues of soil organisms, and well-
decomposed substances (Brady, 1984). Despite its low content, it is of significant
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significance to numerous aspects of plant growth and soil fertility. It contributes to
the biological, chemical, and physical properties of the soil. The average composition
of SOM is 47% C, 44% O, 7% H, 2% N, and very minor amounts of other
elements. The resistant material lignin comprises 10–40% of SOM, while the
remaining portion is composed of N compounds (Shand, 2007). Carbohydrates
comprise more than half of SOM.

Soil fertility is significantly influenced by the comprehensive complex of
organic matter, soil organisms, and soil flora. It performs a variety of functions in the
soil, such as nutrient storage by increasing the CEC of the soil, providing chelates,
and increasing the solubility of specific nutrients in the soil solution. SOM is
composed of the fully-decomposed fine humus fraction, small plant roots, and
members of the flora and fauna domains. Humus, a dark, complex mixture of organic
substances modified from original organic tissue, is synthesized by various soil
organisms and is resistant to further microbial decomposition, accounting for
approximately 35-50% of total SOM (Prasad and Power, 1997).

SOM serves a function that surpasses its proportion of the soil volume. It is a
virtual reservoir of nutrients, directly contributes to cation exchange and water
retention, releases nutrients into the soil solution, and generates acids that influence
the fixation and release of other nutrients. Additionally, it enhances soil structure by
increasing soil water-holding capacity, infiltration, microbial activities, and aeration
to facilitate successful cultivation (Grossl and Inskeep, 1991). The C:N ratio is a
general indicator of the quality of SOM, with a range of 10–15:1 for fertile
soils. Organic manures or green manures are incorporated into the soil's organic
reservoir upon their addition (Roy et al., 2006).

2.2.2. Soil reaction (pH)

One of the most critical parameters obtained from soil testing is the soil
reaction, which is expressed as pH. This parameter is a critical indicator of soil
health. It has a significant impact on the incidence of soil-borne diseases, nutrient
availability, microbial activity, plant growth, soil structure, and the effectiveness of
pesticides. Soils are classified as acidic, neutral, or alkaline according to their pH
values, which range from 0 to 14 (Shand, 2007). Generally, the optimal pH range for
most crops is between 6.0 and 7.5, as this range optimizes nutrient availability.
Numerous factors, such as climate, land management practices, mineral weathering,
ammonium-based fertilizers, and organic matter decomposition, influence soil pH.

10



PREVIOUS STUDIES M. A. Salih SALIH

 
Acidification is frequently the consequence of intensive cultivation, leaching, and the
continuous application of acid-forming fertilizers, while sodium dominance
frequently leads to soils that are exceedingly alkaline. Reduced crop productivity can
result from the restriction of essential nutrients' solubility due to excessive acidity or
alkalinity.

The pH of soil can be adjusted by implementing a variety of
amendments. Agricultural lime is the most effective and extensively used method for
acidic soils, with application rates dependant on the soil's buffering capacity and crop
requirements (McCauley et al., 2009). In contrast, materials such as gypsum,
elemental sulfur, or iron pyrites may be employed in alkaline soils, although their
effects are frequently transitory and economically not viable (Roy et al., 2006). In
general, plants are more susceptible to alkalinity, which is primarily influenced by
Na+, than to acidity, which is primarily influenced by H+. Their adaptation is closely
associated with nutrient availability rather than pH alone.

2.2.3. Cation exchange capacity (CEC)

The capacity of a soil or any other substance with a negatively charged
exchange complex to retain cations in exchangeable form is referred to as the CEC
(Shand, 2007). It is a critical attribute of soil fertility. The CEC is a metric that
reflects the soil's capacity to retain and supply nutrients, specifically the positively
charged nutrient ions known as cations (Bolt et al., 1976). It is a metric that
quantifies the soil's net negative charge. Expressed in cmol+ kg-1 or me/100 g of
soil. The CEC is contingent upon the quantity and composition of clay minerals and
organic matter in the soil. The CEC of clay soils is greater than that of barren soils.
In the same vein, soils that are abundant in OM exhibit a higher CEC than soils that
are deficient in OM (Desalegn Eshetu, 2021).

Differing cations are retained at the exchange sites due to their adsorption
affinity or bonding strength (Schroeder, 1984). This determines the ease or difficulty
with which these can be dislodged from the exchange site by cations in the
solution. A CEC exceeding approximately 15 meq 100g-1 has a relatively high
capacity to retain nutrient cations, such as Ca2+, Mg2+, K+, NH4+, Cu+2, Fe+2,
Mn+2, and Ni+2. Table 2.2 illustrates some typical CEC values for a variety of soil
textures.

Table 2.2.  Cation Exchange Capacities (CEC) for a range of soil textures (Brady,
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1984).

  Soil Texture   CEC Range (meq 100g-1)

  Sand   2 - 4

  Sandy loam   2 - 17

  Loam   8 - 16

  Silt loam   9 - 26

  Clay   5 - 58

(H+) and (Al3+) are classified as acidic cations due to their tendency to
decrease soil pH. Conversely, (K+), (Ca2+), and (Mg2+) are classified as basic
cations and do not have a direct impact on soil pH. In general, the vigor with which
various cations are held on the exchange complex is arranged in the following order:
Al3+ > Ca2+ > Mg2+ > K+, H+, NH4+ > Na+. The ideal ratio of cations on the
exchange complex for average mineral soils is 75:15:5-3 of Ca:Mg:K. One that is
held on a negatively charged surface and displaced by another cation is referred to as
an exchangeable cation.

In general, the chemical activity of the soil is contingent upon its CEC. The
most fertile soils are those with a high degree of base saturation, provided that the
exchange complex is not dominated by a single cation (e.g., Na in sodic soils). In the
surface horizons of mineral soils, the CEC is substantially influenced by the high
OM and clay contents. However, in the subsoil, particularly where the Bt horizon is
present, the clay fractions contribute more CEC than the OM due to the decline of
OM with profile depth (Foth, 1991; Brady and Weil, 2008).

The highest CEC value was observed in soils under forest land, while the
lowest was observed under cultivated land, as noted by Bewket and Stroosnijder
(2003). Soil erosion and OM depletion are the primary causes of the significantly
reduced CEC of the cultivated lands. Consequently, it is imperative to investigate
and assess the chemical properties of soil in order to prevent the depletion and
degradation of soil nutrients and to ensure the sustainability of production.

2.2.4. Electrical conductivity (EC)

The measurement of EC is the most frequently employed method for
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assessing soil salinity (Rhoades and Miyamoto, 1990; Shirokova et al., 2000). The
results are typically expressed in mS m⁻¹ and adjusted to 25 °C, and the experiment
is typically conducted in saturated paste or near field capacity (Rhoades et al., 1999).
Salinity, water content, bulk density, texture, organic matter, and CEC are all factors
that affect soil EC (Corwin and Lesch, 2005a; Lukas et al., 2009). In order to
characterize soil properties that influence crop yield, such as salinity, nutrients (e.g.,
NO₃⁻), compaction, and organic matter, spatial EC surveys have become essential
(Friedman, 2005). Nevertheless, the correlation between EC and crop yield is
frequently erratic as a result of soil heterogeneity, temporal yield variability, and
climatic conditions (Corwin and Lesch, 2003). In instances where correlations are
present, EC maps are advantageous for the identification of soil properties that
restrict yield and for the development of soil sampling strategies (Corwin et al.,
2003; Corwin and Lesch, 2005b).

2.2.5. Calcium carbonate (CaCO3) 

CaCO3 forms significantly impact the majority of the physical, chemical, and
biological properties of soil that are inherited. It is a naturally occurring component
of numerous soils, primarily in the form of sparingly soluble alkaline earth
carbonate, such as dolomite and calcite. In the majority of chemical and
mineralogical properties, the soils of arid and semi-arid regions are closely related to
their bed minerals. In these regions, limestone rock is the predominant substrate.
Despite excessive leaching, a substantial quantity of CaCO3 will persist within soil
horizons, potentially exceeding 30% (Umer et al., 2020). The majority of carbonate
minerals in Iraqi soils are calcite, which comprises 90% of the total soil carbonates
(Al-Kasyi, 1989). The American soil classification system classifies the soil in arid
and semi-arid regions as calcisols, with a significant secondary deposition of calcium
carbonate as a consequence of precipitation from the soil solution caused by
evaporation in arid conditions (Portal, 2016). The identification of total carbonate,
such as CaCO3, in soil is of considerable interest due to its high utility in the
diagnosis of soil status in terms of structure, texture, biological activity, or nutrient
content. Calcareous soils are typically alkaline due to the presence of CaCO3. Ca+2
in soil is derived from the weathering and degradation of bedrocks in the lithosphere
or from the surface (Dijkstra et al., 2003). The soils contain an excessive quantity of
soluble calcium, which results in a strong tendency for the available phosphate
forms, such as orthophosphate HPO4 and H2PO4, to be fixed as apatite
Ca5(PO4)3(OH, F, Cl).

13



PREVIOUS STUDIES M. A. Salih SALIH

 
2.2.6. Nitrogen (N)

N is one of the most abundant and critical mineral constituents in plants.
Plants absorb it in the fourth highest quantity, following C, O, and H (Tisdale et al.,
1985). Fertilizer N additions and the mineralization of organic N from OM, crop
residues, and organic detritus are among the numerous sources of available N in soils
(Keeney, 1982; Meisinger, 1984). The quantity of N in surface soils is typically
between 0.02 and 0.25% and is closely correlated with the amount of OM, which
accounts for approximately 5% (Bear, 1977). 8 to 120 kg of N ha-1 are released in a
plant-available form if 1 to 3% of this organic N is mineralized annually (Bremner,
1965). Soil is naturally supplemented with nitrogen through rainfall and the fixation
of nitrogen by soil microorganisms and legumes. The soil is typically supplemented
with nitrogen through the application of fertilizer, manure, or other organic materials
(Lamb et al., 2014).

Although the majority of plant species are capable of utilizing either NH4 or
NO3, a small number of them exhibit a preference for NH4. NO3 is typically the
predominant form of available nitrogen in the plant root zone, as NH4 is converted to
NO3 in the majority of soils (Bear, 1977). The quantity of organic nitrogen that soil
microbes convert to a form that is readily available is contingent upon environmental
factors such as soil oxygen levels, rainfall, and temperature (Bundy and Meisinger,
1994).

Under-fertilization, leaching, poor nodulation in legumes, and denitrification
caused by waterlogged soils are the most prevalent causes of nitrogen deficiency.
Additionally, soil drainage, soil texture, CaCO3 content, and slope steepness affect
the transport and transformation processes of nitrogen, which can restrict its
availability to crops or increase the potential for loss (Lamb et al., 2014). The soils'
insufficient N supply necessitate substantial fertilizer additives to accommodate the
nitrogen requirements of high-yielding non-leguminous crops, including maize, rice,
sorghum, and finger millet (Foth, 1991).

2.2.7. Phosphorus (P)

Phosphorus (P) is an essential nutrient for plants, second only to nitrogen in
fertilizer utilization, as per Troeh and Thompson (2005). The majority of the total
soil P is bonded within organic matter or mineral forms, with less than 5% of it being
readily accessible to plants (Johan et al., 2021). The average total soil P
concentration is 0.02–0.2% (Desalegn Eshetu, 2021). P is distinguished by its
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restricted mobility in soils, where it is present as H₂PO₄⁻ in acidic conditions and
HPO₄²⁻ in alkaline conditions. In surface soils, the organic fraction, which is
predominantly associated with humus, may account for 25–65% of the total P
(Brady, 1984). Conversely, the inorganic fraction is frequently fixed in low-solubility
Fe, Al, or Ca compounds (Schulte and Kelling, 1996). Mineralization of organic
matter releases plant-available inorganic P, a process that is facilitated in warm, well-
aerated soils. Conversely, soluble fertilizer P is swiftly converted to less-available
forms. Soil pH, clay mineralogy, ionic interactions, organic matter content, and
soil–phosphate contact time further regulate the availability of P.

2.2.8. Potassium (K) 

Potassium (K) is the seventh most abundant element in the Earth's crust, with
an average concentration of 2.6% in the lithosphere (Rich, 1968; Gurav et al., 2018;
Murashkina et al., 2007). Sparks (2000) reports that it is typically the most abundant
of the major and secondary nutrients in soils (Reitemeier, 1951), with concentrations
in the top 20 cm ranging from 3000 to 100,000 kg ha⁻¹. Soil K is available to plants
in four forms, each of which has an increasing availability: solution 1-10 ppm,
exchangeable 40-600 ppm, nonexchangeable 50-750 ppm, and mineral 5000-25,000
ppm (Tisdale and Nelson, 1966). Clay minerals, soil moisture, texture, and
fertilization rate significantly influence plant-available K, despite its abundance
(Samadi, 2006; Simonsson et al., 2007).

K is a macronutrient that is third in fertilizer use, following N and P
(Mikkelsen and Bruulsema, 2005). It is also instrumental in improving the tolerance
of crops to environmental stresses (Zorb et al., 2014). It is crucial for the
physiological processes of protein synthesis, membrane permeability,
photosynthesis, enzyme activation, osmoregulation, translocation of photosynthates,
and cell turgor. Additionally, it reduces the uptake of toxic ions in saline or flooded
soils (Marschner, 2011; Mengel and Kirkby, 2001; Lakudzala, 2013; Hasanuzzaman
et al., 2018). Additionally, it is essential for the maintenance of cell turgor.

2.2.9. Calcium (Ca)

For more than a century, Ca has been acknowledged as an essential nutrient
and occupies a distinctive position among plant nutrient elements. Although higher
plants frequently contain 1-50 mg g⁻¹ of Ca in dried matter, the optimal Ca
concentration in plants is approximately 0.2-1% (Rekani et al., 2022). Ca is typically
ten times more concentrated than potassium in soil solutions, rendering it a
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significant source of nutrient uptake. Nevertheless, the absorption of Ca²⁺ can be
impeded by the application of fertilizers containing K⁺, NH₄⁺, and Mg²⁺, as is
frequently observed in horticultural and agricultural practices (Mengel and Kirkby,
1987).

The levels of soil calcium are highly variable, ranging from less than 0.01%
calcium oxide in corrosive laterites and wetlands to extremely high levels in chalky
soils (Burstrom, 1968). Ca is essential for the preservation of membrane stability and
cell integrity in a physiological context. Ca ions stabilize the plasmalemma by
binding to the phosphate and carboxylate groups of phospholipids and proteins at
membrane surfaces. Although other cations may displace Ca, none can entirely
replace its stabilizing function (Legge et al., 1982; Marschner, 2011). Ca deficiency
symptoms initially manifest in juvenile leaves and tissues as a result of its immobility
in plants. Brown chlorotic patches along leaf margins, leaf distortion and crinkling,
and impaired root tip development are among the characteristic symptoms. Ca
deficiency results in wilting and, in severe cases, plant mortality (Rekani et al.,
2022).

2.2.10. Magnesium (Mg)

Magnesium (Mg) is present in both primary and secondary minerals and
constitutes approximately 2% of the Earth's mantle. However, 90–98% of the Mg in
soil is immobilized within mineral crystal lattices and thereby unavailable to plants
(Grimme, 1991; Maguire and Cowan, 2002; Gransee and Führs, 2013). The total Mg
content of soil typically varies between 0.05 and 0.5%, contingent upon the source
material and the extent of weathering. Common minerals that contain magnesium
include amphibole, dolomite, biotite, chlorite, olivine, pyroxene, serpentine,
montmorillonite, and vermiculite (Schulte, 2004a). In general, soil magnesium is
classified into four fractions: readily exchangeable, slowly exchangeable (acid-
soluble), organically complexed, and structural forms (Mayland and Wilkinson,
1989). Approximately 10% of the total soil magnesium is available to plants, with
the majority of it being released from secondary clay minerals like mica and chlorite
(Salmon, 1963).

2.2.11. Micronutrients

Micronutrients are elements that are essential for plant nutrition, despite their
minuscule quantities, and are required by plants. The main micronutrients in this
study are Fe, Mn, Zn, Cu, and B, which collectively account for less than 1% of plant
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dry matter. Their accessibility is contingent upon OM, pH, texture, and progenitor
material. In contrast, the primary processes that regulate micronutrient dynamics are
sorption, desorption, precipitation, dissolution, mineralization, and plant assimilation,
while OM increases availability by releasing chelating agents (Foth and Ellis, 1997;
Brady and Weil, 2008).

2.2.11.1. Iron (Fe) 

It is the fourth most abundant element in the Earth's crust, primarily found in
silicate minerals, oxides, and hydroxides that contribute reddish and yellowish hues
to sediments (Bould and Hewitt, 1963). The total soil Fe content typically ranges
from 1-5% (20,000-100,000 kg ha⁻¹ in the plow layer), but less than 0.1% is plant-
available (Schulte, 2004b; Jones and Jacobsen, 2009). Ferrous (Fe²⁺) and ferric (Fe³⁺)
forms of Fe are present in soils, and their dominance is determined by soil pH and
aeration. Deficiencies that are prevalent in calcareous soils are a result of the sudden
decrease in soluble Fe concentrations that occurs as pH increases, particularly
between 7.4 and 8.5. The availability of Fe is further diminished by inadequate
aeration as a result of inundation or compaction (Greenland and Mott, 1978;
Schwertmann, 1979; Sharma and Mathpal, 2020). Organic matter enhances the
availability of Fe by producing stable complexes, which in turn decreases its
precipitation as ferric hydroxide. In plants, deficiency symptoms manifest initially on
young leaves, resulting in interveinal chlorosis, which is frequently confounded with
Mn deficiency due to Fe's immobility. In severe cases, successive new leaves
become progressively paler.

2.2.11.2. Manganese (Mn)

In the soil solution, manganese is primarily present as Mn²⁺ in soils.
However, it is also present as exchangeable Mn, Mn oxides, organic complexes, and
as a component of ferro-magnesian silicate minerals. In certain soils, concentrations
can exceed 3000 ppm; however, plants are unable to utilize a significant portion of
this (Schulte, 1992). According to Enakiev et al. (2018) and Krauskopf (1972), its
availability is significantly impacted by soil pH, organic matter, precipitation, and
aeration. Deficiencies are prevalent in soils with a pH greater than 6.5, while
toxicities are more prevalent below pH 5.5.

2.2.11.3. Copper (Cu)

Copper is primarily found in mineral lattices in soils, with lesser fractions
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occurring as Cu²⁺ adsorbed to clays or bound to organic matter (Mengel et al.,
2001). The average concentration of total Cu is 30 ppm, with a range of 2-100 ppm.
Liming reduces Cu availability by increasing sorption, which is primarily regulated
by soil pH and organic matter (Reed and Martens, 1996). Sandy soils are more
susceptible to Cu deficiency, and the requirements of different crops vary. Beet,
lettuce, onion, sunflower, and tomato are among the most demanding (Schulte and
Kelling, 2004a).

2.2.11.4. Zinc (Zn)

Zinc is a trace element with total soil contents ranging from 10-300 ppm,
while the lithosphere average is approximately 80 ppm (Goldschmidt, 1954; Swaine
and Mitchell, 1960). Soluble ions (Zn²⁺, ZnOH⁺), exchangeable forms on clay and
OM, and secondary minerals are all examples of plant-available zinc (Kiekens,
1995). Parent material, pH, organic matter (OM), soil compaction, and moisture all
influence availability (Alloway, 2008). Zn deficiency is a globally prevalent
micronutrient issue that results in yield losses in numerous crops. However, excess
exchangeable Zn (>100 ppm) has the potential to be toxic (Yang et al., 2020;
Alsafran et al., 2022).

2.2.11.5. Boron (B)

Boron is indispensable for the development of plants (Shelp, 1993). Soil B is
primarily present as borate anions (BO₃³⁻) in solution, which are mobile and readily
leached, with a range of 2-100 µg g⁻¹ (Warington, 1923). Its availability is contingent
upon the pH, OM content, and soil texture, with the highest adsorption occurring at
pH 8-9 (Shorrocks, 1997; Roy et al., 2006). Toxicity (>5 ppm) can occur in saline or
B-rich irrigated soils, while deficiency is prevalent in sandy and calcareous soils. B
management is difficult due to the narrow margin between deficiency and toxicity
(Alloway, 2008).

2.2.12. Machine learning in estimation of soil properties

The integration of machine learning (ML) algorithms and GIS has
significantly advanced soil fertility research, facilitating the analysis of
multidimensional datasets and the identification of intricate relationships between
soil properties and environmental factors. In particular, when trained on satellite
imagery, VNIR spectroscopy, and laboratory datasets, methods such as neural
networks, decision trees, RF, and GBR have exhibited high predictive performance
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for soil properties and fertility indices (Viscarra Rossel et al., 2010; Shahabi et al.,
2020; Gökmen et al., 2023). These predictive models have facilitated the production
of spatially explicit soil fertility maps, which provide essential insights for precision
agriculture and sustainable land management, when combined with GIS (van
Zonneveld et al., 2020).

The Analytic Hierarchy Process–Fuzzy (AHP-Fuzzy) weighting methodology
has been implemented in numerous studies to further improve the integration of
diverse datasets. This methodology enables the distinct prioritization of soil
properties and spectral indices, while simultaneously minimizing subjectivity and
uncertainty in expert-based weighting systems (Saaty, 1990; Kahraman et al.,
2003). Subsequently, the SVM was employed to analyze the weighted datasets. This
classifier is renowned for its ability to identify intricate nonlinear relationships and to
categorize soils into fertility categories that are beneficial for agricultural planning
(Cortes and Vapnik, 1995). Despite the fact that algorithms such as SVM and RF
have demonstrated exceptional predictive performance in soil science (Heung et al.,
2016; Taghizadeh-Mehrjardi et al., 2020), the black-box" problem which obscures
the reasoning behind model predictions and reduces confidence among scientists and
land managers remains a significant impediment to their general adoption (Murdoch
et al., 2019).

2.2.13. Soil fertility index (SFI)

Soil fertility ensures that plants get the macronutrients and micronutrients
they need to grow well. However, low soil fertility results in stunted plant growth,
reduced yields, and severe economic losses in agriculture. Excessive quantities of
some nutrients, on the other hand, can cause nutritional imbalances, lower
productivity, and environmental dangers such as water eutrophication and soil
degradation (Lal, 2004). As global agriculture faces mounting pressure to strike a
balance between production and sustainability, these constraints underscore the
pressing need for more effective, scalable, and economical evaluation techniques
(McBratney et al., 2003; Stenberg et al., 2010).

Establishing the SFI in recent years has led to notable advances in soil
research. The SFI is a comprehensive method that assesses fertility holistically by
integrating many soil metrics, such as physical, chemical, and biological
characteristics (Askari and Holden, 2015). By classifying soils into fertility classes,
the SFI offers practical advice for putting specific and efficient soil-handling
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methods into reality. SFI development techniques are increasingly dependent on
cutting-edge technologies, including digital elevation models (DEMs), satellite
images, and VNIR spectroscopy. VNIR spectroscopy has become an efficient and
inexpensive means to estimate important soil characteristics such as pH, CEC, and
OM.

According to Rossel, (2011), it is a compelling substitute for conventional
laboratory analyses due to its capacity to produce accurate predictions using spectral
reflectance data. Satellite photography also offers a landscape-scale view of soil
fertility and gives vital spatial information on vegetation health, soil dynamics, and
land use changes. Topographic data, including elevation and slope, which affect soil
erosion, water flow, and nutrient distribution, is another way that DEMs enhance this
data. By combining these tools, soil fertility may be understood more thoroughly and
spatially explicitly.
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3. MATERIALS AND METHODS

3.1. Statistical analysis 

Statistical analyses included determining the minimum, maximum, mean,
standard deviation (St D), coefficient of variation (CV), kurtosis, and skewness.
Shape parameters highlighted non-normal data distributions, with high skewness
indicating significant deviations from normality (Webster and Oliver, 2007). To
assess normality, the Kolmogorov-Smirnov test was used, considering data normally
distributed when p > 0.05. Ensuring normality and symmetry is crucial, as non-
normality can negatively affect geostatistical analyses (Kerry and Oliver, 2007). The
Pearson correlation coefficient was calculated to explore relationships between
variables, with significant correlations determined at p < 0.05. All statistical analyses
were conducted using SPSS software (version 9.3).

3.2. Description of study area

3.2.1. Location

The agricultural lands in the Bardarash and Semel districts of Duhok, Iraq,
were the subject of this study. The study area is situated between latitudes
36°18′12.64″ and 37°20′33.55″ N, and longitudes 42°20′25.36″ and 44°17′40.50″ E,
with elevations spanning from 430 to 2,500 meters above sea level. The entire area
of Duhok Province is approximately 11,066 km2 (Table 3.1; Figure 3.1).

The landscape of the study area is predominantly semi-flat, interspersed with
hills and mountainous terrain. These elevated areas were excluded from the analysis
due to their limited suitability for agricultural activities. Bardarash is situated in the
southern part of the province, while Semel lies to the southwest. These two districts
were selected for their substantial contribution to agricultural production and their
well-established reputation as the province’s primary food-producing zones.
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Figure 3.1.  Location of the study area (Bardarash and Semel districts).

Table 3.1.  GPS Coordinates of the Soil Sample Locations.

  No.   District Sub
District

  Village
Longitude
s

Latitude
s

Altitud
e

  1
Bardarash

  Kalak   Kavrasor   379001
4019028

  339

  2
Bardarash

  Kalak   Asky kalak   376813
4013153

  254

  3
Bardarash

  Kalak   Wardak   371227
4006402

  274

  4
Bardarash

  Kalak   Tylaban   369489
4005572

  233

  5
Bardarash

  Kalak   Tal alaswad   368626
4013885

  255

  6
Bardarash

  Kalak Bahre-
Sherakan

  370774
4018408

  268

  7
Bardarash

  Kalak Mangubah-
Khazer

  374347
4017477

  297
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  8

Bardarash
  Kalak Aj kala

Bchok
  370965

4021316
  300

  9
Bardarash

  Kalak Aj kala
Mazn

  374244
4022348

  338

  10
Bardarash

  Kalak   Bshirian   381007
4018553

  272

  11
Bardarash

  Daratoo   Henjirok Bot   384092
4023021

  319

  12
Bardarash

  Daratoo   Bani Nan 1   387596
4023617

  285

  13
Bardarash

  Daratoo   Bani Nan 2   388615
4027726

  341

  14
Bardarash

  Daratoo   Korav   384197
4028102

  485

  15
Bardarash

  Daratoo   Grdapan 1   380500
4028720

  420

  16
Bardarash

  Daratoo   Grdapan 2   378587
4032647

  381

  17
Bardarash

  Daratoo   Gomazard   383779
4032542

  444

  18
Bardarash

  Daratoo   Morelan   388527
4033645

  419

  19
Bardarash

  Daratoo   Dalare   391707
4035021

  386

  20
Bardarash

  Daratoo   Daratu 1   391833
4039667

  334

  21
Bardarash

  Rovia   Chamma   395382
4040255

  303

  22
Bardarash

  Rovia   Barda Sur   390873
4044095

  406

  23
Bardarash

  Daratoo   Daratu 2   391019
4041651

  355

  24
Bardarash

  Daratoo   Daratu 3   389384
4038042

  374

  25
Bardarash

  Daratoo   Daratu 4   387645
4040609

  349
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  26

Bardarash
  Daratoo   Girbdau 1   385065

4042251
  367

  27
Bardarash

  Daratoo Dugondan
small

  385421
4038856

  404

  28
Bardarash

  Daratoo   Zanganan   381161
4039042

  436

  29
Bardarash Bardarash

  Zamzamuk   376811
4040159

  400

  30
Bardarash Bardarash

  Dreen But   371502
4031381

  359

  31
Bardarash Bardarash

  Qadsy Mazn   370230
4035985

  338

  32
Bardarash Bardarash

  Kani lan   368648
4041395

  357

  33
Bardarash

  Rovia   Asmawa   370130
4046152

  341

  34
Bardarash

  Rovia   Dolejan   372627
4051611

  372

  35
Bardarash

  Rovia   Husainya   374297
4055384

  377

  36
Bardarash

  Rovia   Dinaran   378884
4054717

  392

  37
Bardarash

  Rovia   Perchawsh   379046
4051386

  405

  38
Bardarash

  Rovia   Rovia   383707
4055158

  438

  39
Bardarash

  Rovia   Rovia 2   387440
4053377

  474

  40
Bardarash

  Rovia Big
Topzawa

  387626
4047645

  440

  41
Bardarash

  Daratoo   Girbdau 2   381528
4043192

  380

  42
Bardarash

  Daratoo   Saly Bag   383033
4046687

  401

  43
Bardarash

  Rovia   Qaranaz   379232
4047011

  384
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  44

Bardarash
  Rovia   Jojar   382368

4050217
  420

  45
Bardarash

  Rovia   Kani Asbhan   379423
4048527

  364

  46
Bardarash Bardarash

  Amian   373493
4045353

  350

  47
Bardarash Bardarash

  Mamuzin   376674
4044565

  359

  48
Bardarash Bardarash

  Khelky   374342
4042508

  360

  49
Bardarash Bardarash

Small
Bardarash

  371852
4044419

  335

  50
Bardarash Bardarash

  Shewara   371120
4041468

  370

  51
Bardarash Bardarash

  Shewara 2   369994
4039181

  391

  52
Bardarash Bardarash

  Bardarash   372774
4038652

  455

  53   Semel   Semel   Kani Gulan   331891
4073416

  600

  54   Semel   Semel   Salihy   329227
4072832

  545

  55   Semel   Semel   Tall Khashsf   326085
4071438

  495

  56   Semel   Semel   Sina   325975
4073927

  540

  57   Semel   Semel   Rakava kavn   320759
4071753

  496

  58   Semel   Semel   Kalha badre   319896
4075074

  478

  59   Semel   Semel   Alouka   312476
4076808

3.2.2. Climate

Climate plays a crucial role in soil formation and in determining the
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suitability of land for agricultural purposes. Among the most influential climatic
factors affecting the physical, chemical, mineralogical, and morphological
characteristics of soils are temperature and precipitation. Climatic data related to
rainfall and temperature for the study area, covering the period from 2015 to 2024,
were obtained from the General Directorate of Meteorology and Seismic Monitoring
in Duhok.

The study area falls within a subtropical, continental, semi-arid climate zone,
characterized by hot, dry summers and cooler winters. Atmospheric pressure tends to
be low during summer and high during winter, and the region is considered to lie
within the semi-guaranteed rainfall zone. The average annual precipitation recorded
during this period was 564.86 mm in Semel and 506.59 mm in Bardarash, with the
majority of rainfall occurring between November and April. In terms of temperature,
the region experiences high summer temperatures, particularly during June, July, and
August. The average summer temperature was 20.20 °C in Semel and 20.08 °C in
Bardarash.

3.2.3. Land use and vegetation

Based on field investigations and information obtained from the relevant
agricultural departments, five major cropping systems were identified within the
surveyed districts, from which soil samples were collected. These cropping systems
were not monocultures but rather diversified systems. The wheat-based cropping
system was the most extensive and dominant, cultivated primarily as a rainfed winter
crop. In contrast, irrigated summer crops included vegetables and fruits such as rice,
corn, sesame, tomatoes, potatoes, watermelons, cucumbers, and other vegetables.
Grain legumes, such as pigeon peas, cowpeas, and other leguminous crops, formed
another important group. Additionally, some areas were interspersed with fruit trees,
olive trees, forest species, and patches of natural grasslands.

3.2.4. Land management and activities

The economic activities of the local communities in the study area are
primarily based on crop production, within a mixed farming system that also includes
animal husbandry. This subsistence-oriented system combines crop and livestock
production, forming an integrated agroecosystem. The most commonly applied
nutrients in crop production are nitrogen (N) and phosphorus (P), typically supplied
in the form of Urea and Diammonium Phosphate (DAP). For several decades,
farmers have followed a blanket fertilizer recommendation, applying standard rates
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of DAP and Urea across all major crop types without site-specific calibration.

However, for certain crops (particularly potato production) there has been no
localized research-based recommendation regarding optimal fertilizer application
rates in the study area. This may lead to inefficient nutrient use, environmental risks,
or suboptimal yields.

3.2.5. Soil sampling

A preliminary survey was conducted to determine the locations from which
samples would be taken. After excluding areas unsuitable for agriculture, valleys,
mountains, and inhabited lands the samples were randomly distributed across the
remaining area based on the shape and extent of the land surface, obstacles to sample
taking, and other factors. A total of 105 soil samples (0-30 cm) across seven sub-
districts: Bardarash, Kalak, Daratoo, Rovia, Semel, Batel, and Fayda (Table 3.2)
were collected, and each of these 105 samples was as follows: A sample was taken
from the previously specified location, then four other samples were taken around
this sample from the four directions, at a distance of about 1 km in each direction.
Then these five samples were mixed together to form a composite sample that is
more accurate and representative of the location. Net samples were air-dried, sieved
(2 mm), The prepared samples were stored in polyethylene bags, which were then
placed in sealed plastic containers for transport and analysis.

Table 3.2.  Sampling of soils from the subdistrict’s perspective.

  Districts   Sub districts   Field samples collected

  Bardarash   Bardarash   11

  Daratoo   18

  Kalak   10

  Rovia   13

  Semel   Semel   25

  Batel   22

  Fayda   6

  Total   105
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The geographic coordinates of each sampling location were recorded using a

hand-held GPS unit (GARMIN 76s). Additional information about each site (such as
land use, vegetation cover, and sampling conditions) was documented on a field card,
which was stored along with the corresponding soil sample.

During sampling, care was taken to avoid contaminated or atypical spots,
including areas with dead plants, furrows, old manure piles, wet zones, areas near
trees, and compost pits. In addition, separate undisturbed soil core samples were
collected using a sharp-edged steel cylinder, manually inserted into the soil, for the
purpose of bulk density determination.

3.2.6. Soil laboratory analysis

The major part of the soil physical and chemical analysis was carried out at
the Soil Research Laboratory of Mosul University. Standard laboratory procedures
were followed in the analysis of the selected physicochemical properties considered
according to what was stated in (Rekani et al., 2022).

3.2.7. Soil physical properties

3.2.7.1. Soil texture

It was analyzed by the Bouyoucous hydrometer method (Bouyoucous, 1962;
Day, 1965; FAO, 1980), after oxidation of OM using hydrogen peroxide (H2O2),
dispersion of soil particles using Calgon [sodium carbonate (Na2CO3) and sodium
hexametaphosphate (NaPO3)6] and get rid of soil solution foam using amyl alcohol.

3.2.7.2. Soil Color

The soil color for dry and wet soil was identified using the Munsell chart
sample.

3.2.7.3. Bulk density (ρb)

The bulk density of the soil was estimated from undisturbed soil samples
which were collected by using a core sampler following the procedures used by
Blake (1965).

3.2.7.4. Soil moisture (SMC)

It was determined using the gravimetric method, in which soil samples were
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oven-dried at (105 °C for 24 h) until a constant weight was obtained (Gardner, 1986).

3.2.8. Soil chemical properties

3.2.8.1. Organic matter (OM)

The (OM) content was estimated by oxidation method of Walkley and Black
using 1N of potassium dichromate (K2Cr2O7) according to Allison (1965).

3.2.8.2. Soil reaction (pH)

Soil pH was measured in soil suspension 1:1 (soil:water) with using pH-meter
model HI8417-HI8519 Microprocessor, Bench-top pH-Meter, HANNA, instruments,
after shaking for 30 minutes according to Rowell (2014).

3.2.8.3. Electrical conductivity (EC)

EC of soil was measured in soil suspension 1:1 (soil:water) by EC-meter
model HI8417-HI8519 Microprocessor, Bench-top pH-Meter, HANNA, instruments,
after shaking for 30 minutes according to Rowell (2014).

3.2.8.4. Cation exchange capacity (CEC)

The (CEC) was estimated using sodium acetate at a pH of 8.2 and the
displaced sodium was estimated by 1M of ammonium acetate using the Flame
photometer according to the method described in Black (1965).

3.2.8.5. Calcium carbonate (CaCO3)

The (CaCO3) was determined by titration method as described in Page and
Keeney (1982) using 1N of HCl with 1N of NaOH.

3.2.8.6. Available N 

Available N was extracted from the soil using 2M potassium chloride (2M
KCL), and it was determined by the Kejldhal method according to (Ryan et al.,
2001).

3.2.8.7. Available P

Available P was extracted by 0.5M of sodium bicarbonate modified at pH 8.5,
measured via modified method by (Olsen et al., 1954).
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3.2.8.8. Available K

Available K was extracted by the neutral ammonium acetate solution, and
measured by Flame Photometer (Sherwood Model 410) according to the method
mentioned by (Keeney, 1982).

3.2.8.9. Calcium (Ca) and Magnesium (Mg)

Ca and Mg was estimated using EDTA - 2Na according to the method
presented by (Keeney, 1982).

3.2.8.10. Micronutrients 

Zn, Fe, Mn, Cu and B was extracted by 0.005M of diethylene triamine Penta
acetic acid (DTPA) and measured via atomic absorption spectrometer (AAS)
according to Lindsay and Norvell (1978).

3.3. Spectral and remote sensing analysis

For the Bardarash district, soil samples previously air-dried and oven-dried at
(105 °C for 24 h), were spectrally measured using an ASD FieldSpec Pro/Pro III
spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) over the
350-2500 nm wavelength range. The instrument generates 2,151 spectral channels,
which correspond to absolute reflectance measurements on a 0-1 scale, as per
Gangannavar et al. (2023). The sampling interval is approximately 1.4 nm in the
350-1000 nm range and 2 nm in the 1000–2500 nm range. The spectrum resolution
in the VNIR is approximately 3 nm, while in the SWIR region it is 8-10 nm. The
illumination source was a stabilized quartz tungsten halogen (QTH) lamp. In order to
guarantee optically dense measurements and prevent interference from container
bottoms, soil samples were positioned in opaque containers at a depth of
approximately 3 cm.

Spectral measurements were conducted in a dark enclosure with a fixed
geometry of 30° incidence angle and 0° viewing angle. The signal to noise ratio was
improved by averaging 10-30 scans for each sample (Dor et al., 2024). Dark current
readings were recorded to account for sensor drift, and the spectroradiometer was
calibrated against a Spectralon® white reference panel before each acquisition.
Equation (3.1) was employed to determine the reflectance values, which were
determined as the ratio of soil reflectance to the white reference material.
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 (3.1)

Raw spectra were exported into ASCII format using ViewSpec Pro software
and subsequently resampled to 10-nm intervals, resulting in 216 spectral bands. A
convex hull was fitted to the spectral curve, and continuum removal (CR) was
performed by dividing the original spectrum by the hull, according to Equation (3.2):

  
 (3.2)

where Scr represents the continuum-removed spectrum, S is the original
spectrum, and C is the continuum curve. Processing of CR spectra was carried out
using ENVI 4.5 software (ITT Visual Information Solutions, USA). This procedure
enhances absorption features and facilitates mineral identification (Clark and Roush,
1984). In addition to soil samples, reference reflectance spectra were acquired for
pure salt minerals frequently encountered in the study region, including crystalline
magnesium chloride hexahydrate (MgCl2·6H2O), anhydrous sodium carbonate
(Na2CO3), gypsum (CaSO4·2H2O), calcite (CaCO3), and halite (NaCl). These
spectra were further compared with the USGS Spectral Library v7 (Kokaly et al.,
2017) to validate and confirm diagnostic mineral absorption features.

For the Semel district, to describe the research region and determine
important biophysical characteristics, remote sensing information was obtained from
open-access Sentinel-2 satellite photography. European Space Agency (ESA)
Copernicus Open Access Hub provided the images for download. To ensure the
correctness of spectral indices and account for atmospheric influences, the Sen2Cor
processor was used to atmospherically correct the raw Level-1C imagery to
Level-2A before analysis. This technique changed top-of-atmosphere reflectance to
bottom-of-atmosphere reflectance. Pixels obscured by clouds were located and
hidden to protect the integrity of the data.

To evaluate several land surface characteristics, such as plant vigor, soil
condition, and water content, a number of spectral indices were computed from the
cleaned data. The near-infrared (NIR), red (RED), green (GREEN), blue (BLUE),
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and short-wave infrared (SWIR) bands' atmospherically adjusted reflectance values
were used to calculate these indices. Table 3.3 contains the formulas for the indices
that were employed in this investigation.

Table 3.3.  Formulas of the spectral indices used for predicting the SFI.

  Index   Equations   References

  Bare Soil Index (BSI) BSI=(SWIR+R)-(NIR+B)/
(SWIR+R)+ (NIR+B)

  Qin et al., 2015

Carotenoid Reflectance
Index 1 (CRI1)

  CRI1=(1/R510)−(1/R550) Gitelson et al.,
2002

Enhanced Vegetation Index
(EVI)

EVI=G((NIR−R)/(NIR+C1 *
R−C2 * B+L))

Huete et al.,
2002

Green Normalized
Difference Vegetation Index
(GNDVI)

  GNDVI=NIR-G /NIR+G Gitelson et al.,
1996

Modified Soil Adjusted
Vegetation Index (MSAVI)

  MSAVI=(2NIR+1-   Qi et al., 1994

Normalized Difference
Vegetation Index (NDVI)

  NDVI=NIR-R/NIR+R Rouse et al.,
1974

Normalized Difference
Water Index (NDWI)

  NDWI=G-NIR/G+NIR   McFeeters, 1996

Soil Adjusted Vegetation
Index (SAVI)

SAVI=(NIR−R)(1+L)/NIR+
R+L

  Huete, 1988

For EVI, standard constants are: G=2.5, C1=6, C2=7.5, and L=1 For SAVI,
the soil brightness correction factor (L) is typically set to 0.5.

3.4. Soil fertility index (SFI)

To assess the fertility status of soils in the districts of Bardarash and Sumel,
the Soil Fertility Index (SFI) was developed independently using two different
methodological frameworks: an expert-based decision-support approach using the
Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) for Sumel, and a statistical
weighting approach based on Principal Component Analysis (PCA) for Bardarash.
This two-pronged strategy made sure that the assessment of soil fertility included
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both expert knowledge under uncertainty and objective data-driven criteria.

3.5. Assigning weights to soil properties

3.5.1. PCA-based weighting in Bardarash district

Principal Component Analysis (PCA), a multivariate statistical method that
reduces dimensionality and finds the most important variables within complicated
datasets, was used to calculate the weights of specific soil characteristics for the
Bardarash district (Jolliffe, 2002; Xu et al., 2021). To ensure comparability across
variables obtained on various scales, including pH, EC, organic matter, and nutrients,
all soil parameters were standardized using scikit-learn's StandardScaler function
prior to analysis (Pedregosa et al., 2011). The sklearn.decomposition package was
then used to perform PCA on the standardized dataset. The main components and
their explained variance were then determined by extracting the eigenvalues and
eigenvectors. The ideal number of components to keep was determined by a variance
retention analysis, which was bolstered by a cumulative variance plot that showed
the percentage of information retained. Weights were allocated based on the relative
contributions of each soil parameter, with parameters exhibiting larger loadings
being given more weight in the evaluation of soil fertility. The loadings of each soil
parameter on the retained components were also evaluated. The contribution of each
variable was represented by vectors in a scatterplot of the first two main components
to facilitate comprehension (Demšar et al., 2013). Through the objective selection
and weighting of the most important soil fertility indicators for Bardarash, this
process made sure that the evaluation accurately represented the main causes of
variability in the dataset.

3.5.2. Fuzzy-AHP-based weighting in Semel district

The Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), which combines fuzzy
logic and expert judgment to overcome subjectivity and confusion in decision-
making, was used to weight the soil attributes for the Semel area (van Laarhoven &
Pedrycz, 1983). Fuzzy-AHP enables expert-driven prioritizing, which makes it
appropriate for diverse landscapes like Semel, in contrast to PCA, which only uses
statistical variance. The fuzzy synthetic extent approach was used in the process
(Chang, 1996). Triangular Fuzzy Numbers (TFNs) were used to describe the
opinions of a panel of soil specialists who first created a hierarchical structure of soil
attributes and conducted pairwise comparisons using a fuzzy linguistic scale (Table
3.4). The relative relevance of each criterion was represented in a flexible and
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complex manner by these TFNs. Next, by combining the evaluations from the
pairwise comparison matrix, the fuzzy synthetic extent value for each criteria i was
determined. This value may be mathematically stated as follows:

  
 (3.3)

where n is the total number of criteria, m is the number of judgments, and mij
is the TFN for criterion i in comparison to criterion j the relative significance of soil
attributes was then ascertained by comparing the fuzzy synthetic extent values, and a
defuzzification process produced clear (non-fuzzy) weights. This created a solid
foundation for evaluating soil fertility in the Sumel district by guaranteeing that
professional opinions were translated into trustworthy and defendable numerical
weights.

Table 3.4.  Linguistic Scale and Corresponding Triangular Fuzzy Numbers (TFNs)
for Soil Fertility Parameter Weighting.

  Linguistic Scale   Triangular Fuzzy Number (TFN)

  Equally Important   (1,1,1)

  Slightly Important   (2/3,1,3/2)

  Moderately Important   (3/2,2,5/2)

  Strongly Important   (5/2,3,7/2)

  Very Strongly Important   (7/2,4,9/2)

  Extremely Important   (9/2,5,11/2)

This approach provided a thorough weighing system tailored to the specific
soil conditions in Sumel by allowing the integration of both quantitative and
qualitative factors.

3.6. Data normalization and SFI calculation

After assigning weights, all soil attribute data were normalized to a similar
scale before calculating the composite SFI. Normalization was required to avoid the
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excessive impact of parameters with broad numeric ranges (for example, EC vs.
organic matter). Normalization was performed using min–max transformation
(Zhang et al., 2024):

  
 (3.4)

where Ni is the normalized value of parameter i, Xi is the observed value, and
X min, X max are the minimum and maximum values within the dateset

The Soil Fertility Index was then calculated using the weighted additive
model (Andrews et al., 2004; Nganga et al., 2020):

  
 (3.5)

where Wi is the weight assigned to parameter i (derived from PCA for
Bardarash and Fuzzy-AHP for Sumel) and Ni is the normalized value. SFI values
close to 0 indicated poor fertility, while SFI values close to 1 indicated high fertility.

The PCA-derived weights for the Bardarash district focused on variables that
have been shown to statistically explain the greatest variation in soil fertility. The
weights obtained by fuzzy-AHP for the Sumel district focused on criteria that experts
agreed were crucial in the face of uncertainty.

This combination of methods improved the robustness of the index for both
districts by ensuring that the evaluation of soil fertility reflected both context-specific
expert knowledge and objective statistical connections.

3.7. Machine learning approaches for soil fertility assessment and land
suitability classification in study area

In the Bardarash district, machine learning methodologies were utilized to
forecast the Soil Fertility Index (SFI) as a continuous variable. Two ensemble-based
techniques, Random Forest (RF) and Gradient Boosting Regression (GBR), were
utilized employing spectral parameters (UV, Blue, Green, Red, NIR1, and NIR2)
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alongside the associated SFI values derived from laboratory investigation

In Semel district, the combined dataset needed to undergo extensive
preprocessing in order to guarantee the best possible model performance before the
SVM was used for land suitability classification. There were numerous crucial
phases in this procedure. Initially, all gathered information was cleaned to remove
any discrepancies or anomalies, including the soil characteristics determined by
laboratory examination and the remote sensing indices. Second, a single scale was
used to normalize all feature variables. For distance-based machine learning
algorithms like SVM, normalization is crucial because it keeps features with higher
numerical values from unduly affecting the model's training. Normalization was
subsequently applied using the min-max normalization approach to a range between
0 and 1 according to equation 3.3. This preprocessing step was crucial for preparing
a high-quality, standardized dataset for subsequent classification (Bishop, 2006).

In the Semel district, the modeling framework emphasized land suitability
classification instead of continuous prediction. A Support Vector Machine (SVM)
model with a Radial Basis Function (RBF) kernel was constructed to address the
intricate, non-linear correlations between soil and remote sensing variables and the
suitability classifications (e.g., very appropriate, moderately suitable, less suitable).
Data preprocessing entailed normalization via the Min–Max method, as delineated in
Equation (3.3).

3.8. Explainable AI (XAI) approaches

Explainable AI (XAI) techniques were applied to the Support Vector Machine
(SVM) model in order to enhance the interpretability of the machine learning models
and offer insights beyond black-box forecasts. Gaining a better understanding of the
relative impact of remote sensing indices and soil parameters on land suitability
classification was the aim. Because they work especially well with sophisticated non-
linear models like SVM, two model-agnostic techniques were used: SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations
(LIME). Each attribute is given an importance value for a particular prediction using
SHAP, which is based on cooperative game theory.

The method identified both globally significant and locally influential
variables by quantifying the contribution of remote sensing indices (e.g., NDVI,
SAVI) and soil fertility parameters (e.g., pH, organic matter, texture) to the
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classification of individual observations into specific land suitability classes through
the calculation of SHAP values. In addition, LIME offered localized interpretability
by creating surrogate models based on individual predictions. This involved
perturbing input characteristics and fitting a simplified interpretable model to
roughly represent the intricate SVM decision surface in that area. This method
provided case-specific explanations by highlighting the characteristics that had the
biggest impact on how each instance was classified.Together, SHAP and LIME
improved the transparency and reliability of the analytical process by facilitating the
understanding of the SVM model at both the global (dataset-level) and local
(individual prediction-level) levels. More importantly, by identifying the
environmental and soil elements most important to land productivity, the use of these
XAI techniques supported the development of focused, empirically supported soil
fertility management plans by giving agricultural stakeholders useful and actionable
insights.

3.9. Assessment of the model

The dataset was initially preprocessed to handle missing values and eliminate
outliers in order to guarantee the accuracy of the forecasts. Following cleaning, the
data was divided into subgroups for testing (20%) and training (80%). In order to
assess the Soil Fertility Index (SFI) and land suitability, machine learning models
such as Random Forest (RF), Gradient Boosting Regression (GBR), and Support
Vector Machine (SVM) were used in both study districts.

SFI was predicted as a continuous variable in the Bardarash district using
regression-based models (RF and GBR). The most significant soil characteristics and
spectral bands might be identified according to these models' prediction powers and
feature significance metrics. According to Equations (3.6–3.9), the Root Mean
Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE),
and the Coefficient of Determination (R²) were used to objectively assess the model's
performance. By measuring the models' explanatory strength as well as the size of
prediction errors, these indicators made sure that SFI value estimations were solid
and trustworthy.

                                   

  
 (3.6)
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 (3.7)

  
 (3.8)

  
 (3.9)

where yi, y^i, represent the observed, estimated, and mean observed SFI
values, respectively, and n denotes the number of observations.

Hyperparameter optimization was conducted using a grid search with cross-
validation, focusing particularly on the kernel coefficient (γ) and the regularization
parameter (C), to maximize both accuracy and generalization capacity.

To classify land suitability in the Semel district, classification-based modeling
was used with a Support Vector Machine (SVM) equipped with a Radial Basis
Function (RBF) kernel. Standard classification measures, such as accuracy,
precision, recall, F1-score (harmonic mean of precision and recall), and the Kappa
coefficient (Cohen, 1960), were used to assess the model's performance. It was
especially crucial to include the Kappa coefficient since it provides a more accurate
assessment than accuracy alone by taking into consideration the likelihood of chance
agreement.

The assessment techniques used in both districts taken together made sure that
classification-based models (SVM) and regression-based models (RF and GBR) were
thoroughly verified. The thorough validation improved the prediction frameworks
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created for the categorization of land suitability and the evaluation of soil fertility in
the districts of Bardarash and Semel.

3.10. Geostatistical analysis and mapping

The results of the analyzed soil parameters and soil ferlitity indx (SFI) were
included in ordinary kriging (OK) and semivariogram geostatistical methods to
generate the spatial degree of dependence and predictive spatial maps using ArcGIS
software version 10.5.

3.11. Semivariogram analysis

Semivariogram analysis was used to evaluate the degree of reliance and
geographical structure among soil fertility metrics. By measuring the variance of
paired sample differences as a function of their separation distance, the empirical
semivariogram was calculated. Through model fitting, the important semivariogram
parameters nugget (C₀), sill (C₀ + C), and range (a) were identified. The sill (C₀ + C)
indicates the overall variance above which spatial autocorrelation becomes
insignificant, but the nugget effect (C₀) represents unexplained variability ascribed to
measurement error or microscale heterogeneity. The spatial continuity of soil
attributes is defined by the range (a), which shows the distance at which samples
become spatially independent.

Following Cambardella et al. (1994), the spatial dependence (SD) ratio was
calculated as:

  
 (3.10)

Where Co is the nugget effect and (Co + C) is the total variance (sill). The
resulting DD ratio was classified as less than 25%, which denotes high dependency;
between 25 and 75% denotes moderate dependence; and beyond 75% denotes weak
dependence.

Spatial dependency is quantitatively classified by this ratio: values <25%
indicate high dependence, values 25-75% indicate moderate dependence, while
values >75% indicate weak dependence. The parameters that were obtained after
calibrating the semivariogram model were used in spatial interpolation to produce
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continuous surface maps of soil properties and SFI. Since these maps were created in
a GIS setting, the distribution of soil fertility throughout the research areas could be
seen and interpreted spatially. In addition to measuring the spatial autocorrelation of
soil characteristics, this method made it possible to create accurate fertility maps,
which are essential for sustainable agricultural planning and site-specific land
management.

3.12. Ordinary kriging (OK) method

In order to produce continuous geographic forecasts of soil fertility
characteristics from point-based measurements, OK was utilized. In contrast to
deterministic approaches like Inverse Distance Weighting (IDW), OK is a
geostatistical method that provides unbiased estimates with minimized prediction
variance by taking into account both the distance between observations and the
spatial autocorrelation structure of the data, as represented by the semivariogram
(Webster and Oliver, 2007; Singh et al., 2010). The semivariance at lag distance h
was calculated using:

  
 (3.11)

Where γ(h) represents the semivariance at lag distance h, as defined by
Webster and Oliver (2007), (����) is the variable value at position ����, and (ℎ) is the
number of data pairs.

A spherical, exponential, and Gaussian theoretical function was used to
describe experimental semivariograms. The coefficient of determination (R2) and
residual sum of squares (RSS) were used to determine which model best fit the data.
Parameterizing the OK interpolator requires the nugget (C₀), sill (C₀ + C), and range
(a), all of which were supplied by the fitted model.

OKs performance was evaluated using cross-validation utilizing error
measures such Mean Standardized Error (MSE), Mean Error (ME), and Root Mean
Square Error (RMSE). Ultimately, a GIS environment was used to create the kriged
surfaces of soil fertility indices, resulting in high-resolution maps that enable
spatially explicit analysis and decision-making in precision agriculture and land
management.
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4. FINDINGS

This section introduces and discusses the laboratory and spatial datasets
obtained from the examination of the physical and chemical characteristics of the soil
in the Bardarash and Semel districts of Duhok Province, northern Iraq. A thorough
grasp of the spatial behavior of soil properties is crucial given the complex link
between agricultural productivity and soil features. Since descriptive and spatial
statistics capture the variety, range, and distribution of soil parameters over the
terrain, they offer a more reliable foundation than mere averages. The scientific basis
for analyzing soil fertility dynamics and directing sustainable land use and
agricultural resource management is established by this thorough assessment.

The findings are arranged in a methodical manner, starting with the evaluation
of the physical characteristics of the soil (texture, bulk density, soil moisture, and
color), then moving on to the chemical aspects (pH, electrical conductivity, organic
matter, calcium carbonate, cation exchange capacity, and the micronutrient and
macronutrient availability). An integrated interpretation of soil fertility is made easier
by this framework, which emphasizes the chemical and physical elements governing
nutrient delivery and soil production in addition to physical limitations on root
growth and water availability.

4.1. Semel district

4.1.1. Laboratory and statistical evaluation of soil physical parameters

The descriptive statistics for the physical soil parameters show a moderate to
high degree of variation (Table 4.7). The mean values for sand (39.17%), silt
(29.89%), and clay (30.95%) content indicate a loamy texture class, which is a
fundamental aspect of the research area's soil composition. The coefficient of
variation (CV) for silt (24.47%) is greater than for both sand (21.47%) and clay
(19.18 %). The average bulk density of 1.39 Mg m-3 is within the usual range for
agricultural soils. Similarly, the mean soil moisture content is 17.98%, with a
moderate standard deviation that reflects the normal range of water availability
throughout the soil profile.

Table 4.1.  Descriptive statistics of soil physical properties in Semel district

Soil
properties

  Min   Max
Mea
n

  StD
Skew Kurt

CV
(%)

P-
value
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  Sand %

23.05
  60.55

39.17
  8.41   0.49   0.44   21.47   0.62

  Silt %
13.50

  43.5
29.88

  7.31
-0.30 -0.37

  24.47   0.53

  Clay %
17.95

  42.45
30.95

  5.93   0.01
-0.58

  19.18   0.99

  Bulk Density   1.13   1.68   1.39   0.13   0.53
-0.44

  9.51   0.19

  SMC (%)
12.24

  23.59
17.98

  2.66
-0.35 -0.23

  14.84   0.83

The CV data revealed significant discrepancies in the variability of the
analyzed parameters. Sand had the highest fluctuation at 21.47%, followed by silt at
24.47%, clay at 19.18%, soil moisture content at 14.84%, and bulk density at 9.51%.
The P-values of the Kolmogorov-Smirnov test suggest that none of the soil
parameters deviated substantially from normality. The minimum P-value for SMC
was 0.83, which suggests that these characteristics can be treated as normally
distributed. The distribution characteristics of diverse soil properties were clarified
through evaluations of skewness, kurtosis, and coefficient of variation.

The skewness values of clay, silt, and sand are 0.01, -0.30, and 0.49,
respectively. Sand's positive skewness implies a right-tail distribution, with a few
exceptionally high values interspersed with the majority of observations. The
negative skewness of silt suggests a concentration toward upper levels, whereas the
nearly zero skewness of clay suggests a fairly symmetrical distribution.

Soil Physical Parameters Spatial Distribution: Figures 4.14 depict the regional
distribution of soil physical parameters, including bulk density, SMC, and soil
texture, with a particular emphasis on the percentages of sand, silt, and clay. These
discrepancies are indicative of topography. Soils that are well-drained but not as
productive are indicated by sand in southern regions. The silt content of these soils is
indicative of a balance between water retention and appropriate discharge, rendering
them more suitable for agricultural production.
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Figure 4.1.  Spatial distribution of soil physical properties (bulk density, SMC, and
soil particles) in Semel district

In the Semel district, the most frequently recorded colors were pale brown
(10YR, 12 samples) and light yellowish brown (10YR, 19 samples) under arid
conditions. Brown (10YR) was observed in six samples, pale brown (7.5YR) in two
samples, and pink (7.5YR) in one sample. Also observed were occasional colors,
including a light brownish gray (10YR, 1 sample) and a very faint brown (10YR, 1
sample). The soils demonstrated a significant transition to darker tints when they
were moistened. The coloration of the samples was as follows: dark yellowish brown
(10YR) dominated with 23 samples, followed by brown (10YR, 10 samples), dark
brown (10YR, 5 samples), and strong brown (7.5YR, 3 samples). Pink (7.5YR, 1
sample) and mild brown (10YR, 6 samples) were additional colors (Figure 4.15).
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Figure 4.2.  Soil color distribution under dry and moist conditions in Semel district

4.1.2. Laboratory and statistical evaluation of soil chemical parameters

The chemical examination of soil characteristics demonstrates significant
heterogeneity within the research region. The mean readings show that the soil is
somewhat alkaline pH was 7.42 ±0.01, and contains a moderate amount of OM
(Table 4.8). The average CEC of 25.48 Cmol+ kg-1, as well as mean values for
exchangeable Ca and K, indicate that the soil has a high capacity for nutrient
retention and availability (Table 4.8).

Table 4.2.  Descriptive statistics of soil chemical properties in Semel district

  Soil properties   Min   Max
Mean StD Ske

w
Kur
t

CV
(%)

P-v
alue

  OM (%)   0.89   2.44   1.78
0.42 -0.1

7
-1.0
0

23.8
8

0.61

  Soil pH   7.14   7.66   7.42
0.10 -0.3

0
-0.0
2

1.47 0.94

  EC (dS m-1)   0.14   0.57   0.31
0.09 0.78 0.68 31.6

1
0.47
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  CEC (Cmol kg-1)   16.34   32.95   25.48

3.91 -0.0
9

-0.4
0

15.3
5

0.97

  CaCO3 (%))   7.50   35.00   19.14
6.30 0.14 -0.4

3
32.9
3

0.94

  Avail. N (mg/kg)   10.00   70.00   30.00
0.00
2

0.07 -0.9
6

46.3
0

0.23

  Avail. P (ppm)   1.05   11.85   3.01
2.30 1.85 3.27 76.3

3
0.00
8

  Exch. K (ppm)   124.00   424
268.45 70.1

0
0.25 -0.4

7
26.1
1

0.77

  Exch.Ca (ppm)   50.10
160.32

  92.82
19.8
6

0.31 1.37 21.4
0

0.09

  Exch.Mg (ppm)   11.90   27.30   22.16
2.50 -1.7

0
6.50 11.3

0
0.07

  Exch. Fe (ppm)   0.26   7.18   2.22
1.80 1.07 -0.1

2
81.0
6

0.00
1

  Exch. B (ppm)   1.00   9.96   3.35
2.29 1.35 1.08 68.3

5
0.06
6

  Exch. Cu (ppm)   0.542   5.32   3.42
0.81 -1.2

8
3.78 23.7

0
0.19

  Exch. Zn (ppm)   1.46   7.11   4.83
1.53 -0.6

3
-0.5
8

31.6
9

0.18

  Exch.Mn (ppm)   1.09   9.37   4.04
2.77 0.64 -1.0

9
68.6
7

0.06

The soil chemical properties descriptive statistics suggest that there are
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numerous prominent fertility constraints. The soils are distinguished by a low level
of OM (mean= 1.78%), which is indicative of feeble biological activity and restricted
organic inputs. Consequently, the soil structure is subpar, and nutrient cycling is
diminished. The deficiency and irregular spatial distribution of available P (mean=
3.01 ppm) were also highlighted, with the highest variability (CV= 76.33%) and a
non-normal distribution (P-value= 0.008).

Simultaneously, the soils calcareous nature was evident in the relatively high
CaCO3 content (mean= 19.14%) and the broad variability (CV= 32.93%). In
addition to indicating a high degree of soil alkalinity, the excessive CaCO3 also
contributes to the fixation of P and the reduced availability of several micronutrients.
These conditions collectively account for the general decrease in soil fertility and the
prospective limitations on crop productivity in the study area. Figure 4.16 presents
the spatial distribution of soil OM, pH, EC, CEC, and CaCO3 within the study area.
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Figure 4.3.  Spatial distribution of soil OM, pH, EC, CaCO3, and CEC in Semel
district

Furthermore, the mean available N concentration was extremely low 30.00
mg/kg. Exch. Ca values in the studied soils ranged from 50.10 to 160.32 ppm, with
an average of 92.82 ppm and a standard deviation of 19.86. The CV 21.40%
indicates moderate variability among the samples. The distribution of Ca data
showed a slight positive skewness 0.31 and kurtosis 1.37, suggesting that the data are
nearly normally distributed. This is further supported by the P-value (0.09 > 0.05),
confirming an approximately normal distribution pattern, while other macronutrients,
including exchangeable K, and Mg, exhibited moderate variability with normal
distributions.
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Figure 4.4.  Spatial distribution of soil macronutrients in Semel district

The CV micronutrients, particularly Fe and Mn, were exceptionally high
(81.06% and 68.67%, respectively), with Fe adhering to a non-normal distribution.
This implies that there is a significant degree of spatial heterogeneity, which is likely
to be influenced by the land management practices and progenitor material. The
results of the study indicate that the soils under investigation are afflicted by a
combination of low organic matter and phosphorus availability, as well as elevated
calcium carbonate, which collectively serve as significant fertility constraints. These
results underscore the necessity of integrated management practices, which include
the application of phosphorus fertilizers and organic amendments, to increase soil
productivity and surmount nutrient constraints. Figures 4.17 and 4.18 present the
spatial distribution of macro- and micronutrients within the study area.
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Figure 4.5.  Spatial distribution of soil micronutrients in Semel district

4.1.3. AHP-Fuzzy weighted soil properties 

The normalized weights of the eight spectrum indices and the seventeen soil
physicochemical variables were systematically determined using the Analytic
Hierarchy Process–Fuzzy (AHP-Fuzzy) framework. Through this approach, each
characteristic was given a relative relevance for the final Soil Fertility Index (SFI)
calculation based on expert judgment. The findings clearly rank the input variables
according to their set weights, as seen in the bar chart (Figure 4.19).
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Figure 4.6.  Normalized weights of soil properties and spectral indices as determined
by the AHP-fuzzy method in Semel district

The study results showed that the largest weight 0.18 was assigned to OM%,
which was followed by Available N 0.11 and CEC 0.14. The fact that these three
factors together constituted a sizable amount of the overall weight highlights their
paramount significance in the expert-based evaluation of soil fertility. B and CaCO3
were given the lowest weights among the remaining physicochemical characteristics
and spectral indices (0.007 and 0.009, respectively).

4.1.4. SVM model performance

The best predicted performance for soil fertility classification was attained by
methodically optimizing the SVM model. The hyperparameters that produced the
greatest results were a linear kernel, a regularization parameter (C) of 0.5, and a
gamma value set to scale. With a total classification accuracy of 0.9811 on the test
set, the model showed remarkable performance. Table 4.9 displays each soil fertility
class's specific performance metrics. All positive forecasts for the Very Low and
Low fertility classes were accurate, as the model reached perfect accuracy 1.00 for
both classes. The model's ability to accurately identify every occurrence of the Very
Low and Medium classes was further demonstrated by the recall being perfect 1.00
for these classes (Table 4.9). The high F1-scores, all above 0.97, confirm a robust
balance between precision and recall across all categories.
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Table 4.3.  SVM classification report for soil fertility classes in Semel district

  Class   Precision   Recall   F1-Score   Support

  Very Low   1.00   1.00   1.00   18

  Low   1.00   0.94   0.97   17

  Medium   0.95   1.00   0.97   18

  Accuracy   -   -   0.98   53

  Macro Avg   0.98   0.98   0.98   53

  Weighted Avg   0.98   0.98   0.98   53

The confusion matrix (Figure 4.20), which displays the correct and incorrect
predictions for every fertility class, provides further visual representation of the
model's classification performance. The model correctly placed all 18 samples in the
Very Low group and 18 out of 18 in the Medium category, as the matrix illustrates.
16 of the 17 samples in the Low class were properly recognized, while one sample
was incorrectly categorized as Medium. The model's robustness is further validated
by the Precision-Recall curve (Figure 4.21) and Receiver Operating Characteristic
(ROC) curve (Figure 4.22).

Figure 4.7.  Confusion matrix of the SVM model for soil fertility classification in
Semel district

The Area Under the Curve (AUC) values for the Very Low and Medium
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fertility classes are 1.00 and 0.97, respectively, according to the ROC curves,
demonstrating the model's exceptional discriminating capacity. A high average
precision for all classes is further confirmed by the Precision-Recall curves, which
show values of 1.00 for Very Low and Medium, and 0.96 for the Low class.

Figure 4.8.  ROC curves for multi-Class SVM prediction of SFI in Semel district

Figure 4.9.  Precision-recall curves for the SVM-based SFI prediction in Semel
district
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4.1.5. Explainable AI insights

Although the SVM model has a high predicted accuracy, stakeholders who
need clear, substantiated insights may find it difficult to use in practice due to its
"black-box" character. In order to solve this, the study is the first to employ
Explainable Artificial Intelligence (XAI), which converts the model's intricate
predictions into understandable, useful conclusions. XAI offers a clear insight into
the model's decision-making process by going beyond conventional performance
indicators, which builds confidence and supports evidence-based land management.
SHAP and LIME are the two main XAI techniques used in our investigation.

4.1.6. Shape

SHapley Additive exPlanations (SHAP) quantify the contribution of each
input feature to the overall forecast, therefore offering a global interpretation of the
model's behavior. In order to provide a consistent measure of feature relevance,
SHAP values (Lundberg and Lee, 2017) are computed using cooperative game
theory to fairly divide the "credit" for a prediction among all features. The bar plot
(Figure 4.23) that displays the average absolute SHAP values reveals the most
important spectral indices and soil characteristics that influence the model's
classifications.

Figure 4.10.  Global feature importance ranking of soil properties and spectral
indices by SHAP values in Semel district
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The SHAP study shows that the two most important factors in determining

soil fertility are Silt (%) and the Bare Soil Index (BSI), which are closely followed
by the Green Normalized Difference Vegetation Index (GNDVI) and Exch. Cu. In
contrast, the SHAP values of characteristics like Bulk Density, Exch. Ca, and the
Normalized Difference Vegetation Index (NDVI) were close to zero, indicating that
they had little effect on the model's predictions.

4.1.7. Lime 

Local Interpretable Model-agnostic Explanations (LIME) give a local
interpretation, offering a condensed, human-understandable explanation for a single
prediction, as opposed to the global viewpoint offered by SHAP (Ribeiro et al.,
2016). LIME builds a locally linear model around the forecast for every individual
soil sample or location, enabling us to see the precise characteristics that led to the
sample's classification as Very Low, Low, or Medium. The factors that positively
and adversely influenced the prediction are broken down sample-specifically by the
LIME analysis, as shown in (Figure 4.24).

Figure 4.11.  LIME explanation for an individual soil fertility prediction in Semel
district

Relatively high EVI, MSAVI, and CEC values may have a beneficial impact
on the model's choice for a given sample with "Medium" fertility, however high pH
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and EC values (as shown by negative LIME weights) have a negative impact. Each
of these characteristics gives a distinct fingerprint for a single prediction, as does
their individual contribution.

4.1.8. Spatial distribution of soil fertility 

A different distribution of soil fertility was found in the Semel region (Figure
4.25), with poor fertility found in most of the area, according to a geographical study.
Based on the data presented, quantitative analysis reveals that the Low fertility class
is the most prevalent, encompassing 443.07 km², or 47.71% of the entire research
area (Table 4.10). Additionally, the Very low fertility class, which makes up 98.09
km² (10.56% of the area), is a substantial component. The large sections of the map
that are tinted in light and dark brown visually demonstrate that low to extremely low
fertility soils make up more than 58% of the research area overall.

Figure 4.12.  Spatial distribution of soil fertility in Semel district

Conversely, soil with Moderate fertility makes up a significant 41.72% of the
area, or around 387.44 km² (Table 4.10). These moderate-fertility soils are not evenly
dispersed geographically; instead, they show up as discrete, concentrated pockets,
which are especially apparent in the map's north-central region. This variation
implies that human and environmental causes have varying effects on soil health
throughout the Semel area.
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Table 4.4.  Distribution of soil fertility classes in Semel district

  Class of soil fertility   Area (km2)   Percentage (%)

  Very low   98.0888   10.56

  Low   443.0673   47.71

  Moderate   387.441   41.72

4.2. Bardarash district

4.2.1. Spatial distribution of environmental characteristics and their effects on
soil fertility

Elevation, slope, and aspect are important environmental elements that have a
significant impact on soil formation, hydrological processes, and land-use suitability.
Figure 4.1 shows how these characteristics are distributed spatially.

Figure 4.13.  Environmental variable (Elevation, Slope, and aspect) of study region.

The research area's elevation varied from 193 to 840 meters, with the
northern and central zones having the highest values. The local climate, drainage,
and vegetation growth were all significantly impacted by these differences. Because
of increased runoff and decreased soil stability, steep slopes (23.27° to 70.66°),
which are concentrated in higher elevation areas, were shown to be more vulnerable
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to rapid erosion. Slope values also varied significantly. The gentler slopes (0°-15°)
that predominate in the southern zones, on the other hand, are less likely to
experience erosion and are better suited for farming because of their easier access
and stable soil.

Variability in the microclimate was also influenced by aspect. In contrast to
south-facing slopes, which had drier soil conditions, faster evaporation, and more
solar radiation, north-facing slopes held onto more soil moisture and supported
unique vegetation patterns.

4.2.2. Laboratory and statistical evaluation of soil physical parameters

The laboratory analysis of soil physical properties revealed substantial
variability in key parameters, including soil texture components (sand, silt, and clay),
bulk density, and SMC, as presented in Table 4.1. The sand content ranged from
26.05 to 85.05%, with a mean result of 42.84%. Conversely, the silt concentration
composition ranged from 2.00 to 45% (mean 26.16%), while the clay concentration
ranged from 12.95 to 51.45% (mean 31.00%). The bulk density ranged from 1.22 to
1.72 Mg m-3, with a mean of 1.43 Mg m-3. The average SMC was 17.66%, with a
range of 11.13% to 22.59%.

Table 4.5.  Descriptive statistics of soil physical properties in the study area.

Soil
Properties

  Min   Max
Mea
n

  StD
Skew Kurt

CV
(%)

P-
value

  Sand %
26.05

  85.05
42.84 12.72

  1.18   1.58   29.69   0.28

  Silt %   2.00   45
26.16

  9.01
-0.51

  0.51   34.45   0.41

  Clay %
12.95

  51.45
31.00

  8.59   0.17
-0.48

  27.72   0.47

  Bulk Density   1.22   1.72   1.43   0.11   0.29
-0.54

  8.05   0.81

  SMC (%)
11.13

  22.59
17.66

  2.88
-0.16 -0.93

  16.32   0.25

Min= Minimum, Max= Maximum, StD= Standard Deviation, Skew= Skewness,
Kurt= Kurtosis, CV= Coefficient of Variation
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The CV data indicated substantial discrepancies in the variability of the

analyzed parameters. The silt content had the greatest fluctuation at 34.45%,
succeeded by sand at 29.69%, clay at 27.72%, soil moisture content at 16.32%, and
bulk density at 8.05%. The Kolmogorov-Smirnov test P-values indicate that none of
the soil parameters significantly deviated from normality; the minimum P-value for
SMC was 0.25, implying that these characteristics can be considered normally
distributed. Assessments of skewness, kurtosis, and coefficient of variation
elucidated the distribution characteristics of diverse soil properties. Clay, silt, and
sand possess skewness values of 0.17, -0.51, and 1.18, respectively. A right-tail
distribution is suggested by Sand's positive skewness, with a few exceptionally high
values interspersed with the bulk of observations. Silt's negative skewness indicates
concentration towards higher levels, whereas clay's nearly zero skewness indicates a
fairly symmetrical distribution.

Spatial Distribution of Soil Physical Parameters: Figures 4.2 and 4.3 illustrate
the regional distribution of soil physical parameters, such as bulk density, SMC, and
soil texture, particularly the percentages of sand, silt, and clay. These differences are
indicative of topography. Sand in southern regions indicates soils that are well-
drained but not as productive. These soils are more suitable for agricultural
production because of the silt content, which shows a balance between water
retention and appropriate drainage.

4.2.3. Spatial distribution of soil physical parameters 

Figures 4.2 and 4.3 illustrate the regional distribution of soil physical
parameters, such as bulk density, SMC, and soil texture, particularly the percentages
of sand, silt, and clay. These differences are indicative of topography. Sand in
southern regions indicates soils that are well-drained but not as productive. These
soils are more suitable for agricultural production because of the silt content, which
shows a balance between water retention and appropriate drainage.

59



FINDINGS M. A. Salih SALIH

 

Figure 4.14.  Spatial distribution of bulk density, and SMC in Bardarash district

Conversely, Figure 4.3 depicts higher levels of clay content that are found in
the eastern and northern regions. Clay-rich soils have better cation exchange and
water retention qualities, which can boost fertility.

Figure 4.15.  Spatial distribution of soil particles (sand, silt, and clay) in Bardarash
district

Soil color is considered an indirect indicator of various critical soil
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characteristics, including water drainage, aeration, mineral composition, and OM
content (Foth, 1991). Black soils are typically rich in OM and thus highly fertile. In
contrast, gray soils tend to have poor drainage and low organic content. Brown soils
generally contain a moderate amount of OM, Fe, and other minerals, indicating good
drainage. Red soils are characterized by high amounts of oxidized iron and usually
have good drainage but low OM. Yellow soils often contain both oxidized and
reduced iron, with limited OM and moderate drainage capacity.

In 29 samples, the predominant soil color was brown 10YR 5/4, which was
observed under arid conditions. Other colors that were recorded included light brown
7.5YR 6/4 (6 samples), pinkish gray 7.5YR 6/2 (4 samples), strong brown 7.5YR 4/6
(3 samples), pink 7.5YR 7/4 (3 samples), pale brown 10YR 6/3 (2 samples), light
brownish gray 10YR 6/2 (2 samples), very pale brown 10YR 7/4 (1 sample), very
dark gray 7.5YR 3/1 (1 sample), and gray 7.5YR 6/2 (1 sample). Brown 10YR 5/4
was the most prevalent color under moist conditions (23 samples), with dark brown
7.5YR 3/4 (18 samples), strong brown 7.5YR 4/6 (3 samples), very dark gray (3
samples), dark yellowish brown (2 samples), yellowish brown (1 sample), very dark
brown (1 sample), and dark grayish brown (1 sample) following in that order. as
shown in (Figure 4.4).

Figure 4.16.  Soil color distribution under dry and moist conditions in Bardarash
district.

4.2.4. Laboratory and statistical evaluation of soil chemical parameters
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Descriptive statistics and laboratory analysis of soil chemical parameters:

Lower, maximum, mean, StD, skewness, kurtosis, CV, and P-values were all
included in the dataset (Table 4.2), suggesting that the soil's chemical properties
varied significantly across a number of parameters.

Table 4.6.  Descriptive statistics of soil chemical properties in Bardarash 

  Soil Properties
Min

  Max
Mean

  StD
Skewness Kurtosis

CV
(%)

P-
value

  OM (%)   0.2   2.79   1.42   0.69   0.18   -1.008   48.84   0.38

  Soil pH   7.15   7.51   7.33
0.076

  -0.17   0.11   1.04   0.92

  EC (dS m-1)   0.12   0.585   0.32
0.089

  0.39   0.710   27.67   0.76

CEC (Cmol
kg-1) 12.22

  31.7   24.50   4.88   -0.35   -0.78   19.91
0.00055

  CaCO3 (%))   9.00   45.00   28.14   9.23   -0.34   -0.64   32.82   0.81

Avail. N
(mg/kg) 29.00

  78.00   54.25
12.61

  -0.15   -0.74   23.25   0.0034

  Avail. P (ppm)   1.05   8.95   3.65   2.18   1.09   0.27   59.71   0.021

  Exch. K (ppm)   28   288
138.76 56.18

  0.38   0.81   40.48   0.32

  Exch.Ca (ppm)
30.06 200.40

  84.98
30.51

  0.75   2.66   35.91   0.15

Exch.Mg
(ppm)

  12.9   22.4   18.14   2.05   -0.24   0.69   11.32   0.78

  Exch. Fe (ppm)   2.72   97.5   36.05
30.80

  0.79   -1.005   85.42
0.00027

  Exch. B (ppm)
0.104

  8.84   1.16   1.33   4.27   22.01   114.86   0.0015

Exch. Cu
(ppm)

  1.00   9.16   3.76   1.94   0.92   0.44   51.57   0.53

  Exch. Zn (ppm)
10.00

  99.7   59.44
25.06

  -0.28   -0.84   42.17   0.78

Exch.Mn
(ppm)

  1.05   9.87   4.82   1.99   -0.0017   -0.46   41.27   0.47
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A mean of 1.42% and a StD of 0.69% were found for the amount of OM. The

range was from 0.2 to 2.79%. The skewness value of 0.18 shows that the distribution
is almost symmetrical with a slight right tail. The kurtosis score of -1.008 suggests
that the distribution is platykurtic, which means it is flatter than normal. The OM
content seems to be very different, with a CV of 48.84%. There were three groups of
soils according to the FAO's method from 1980: medium 23%, very low 35%, and
low 42%. The P-value of 0.38 shows that the OM data follows a normal distribution.

The mean soil pH was 7.33±0.01, with a low StD of 0.076, and the range was
from 7.15 to 7.51. The kurtosis is 0.11 and the skewness is -0.17, indicating that the
distribution is nearly normal with a minor left tail. The CV is 1.04%, which indicates
a low level of variability. No significant deviation from normality is further
confirmed by the high P-value of 0.92. The soils were classified as neutral to mildly
alkaline according to Jackson's (1973) classification, with 23% of them being neutral
and 73% being mildly alkaline.

At 25°C, the EC of a 1:1 mixture of dirt and water in Bardarash ranged from
0.12 to 0.59 dS m-1, with 0.32 ± 0.012 dS m-1 being the average. With a skewness
value of 0.39, the distribution was slightly skewed to the right. The kurtosis value of
0.71 shows that the distribution had a few more peaks than usual. The large P-value
of 0.76 shows that the EC data are distributed normally. The CV was 27.67%, which
means there was moderate fluctuation. Based on Duran's (1983) description, all of
the soils in the area that was studied were not salty.

Spatial distribution of Soil OM, pH and EC across the study area is shown in
Figure 4.5. Soils in Bardarash had a CEC that ranged from 12.22 to 31.70 Cmol
kg-1, with 24.50 being the mean and 4.88 being the standard deviation. The
distribution had a slight left skew -0.35 and a flat shape -0.78, which is called a
platykurtic pattern. The P-value of 0.00055 shows that there is a big difference from
normalcy. There was some difference, but not a lot. The coefficient of variation CV
was 19.91%. Following Duran's (1983) classification, about 52% of the soils were
found to have a high CEC, while 48% were found to have a middle CEC.
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Figure 4.17.  Spatial distribution of soil OM, pH, and EC in Bardarash district

CaCO3 levels in the Bardarash district ranged from 9 to 45%, with an average
of 28.14%. As indicated by the skewness of -0.34 and kurtosis of -0.64, the
distribution is platykurtic and slightly left-skewed. The estimated CV (32.82%)
indicated a high degree of variability among the samples, whereas the P-value (0.81)
was greater than 0.05, showing that the variation was not statistically significant.
About 94% of the soils had a CaCO3 content that was categorized as high to very
high, with the remaining 6% having a medium CaCO3 value (Belay et al., 2025).
The spatial variability of CaCO3 and CEC is presented in Figure 4.6.

64



FINDINGS M. A. Salih SALIH

 

Figure 4.18.  Spatial distribution of CEC and CaCO3 in Bardarash district

The available N in the soils of the Bardarash district varied from 29.00 to
78.00%, with an average of 54.25 ± 0.00017%. The distribution exhibited a minor
left tail, evidenced by a skewness of -0.15, and a platykurtic characteristic, as
indicated by a kurtosis of -0.74. A P-value of 0.034 suggests a tendency towards
normality. Moderate variability was noted, with a CV of 23.25%. The available
nitrogen (N) content in the studied soils ranged from 29 to 78 mg/kg, with an average
value of 54 mg/kg. The amount of available P in the soils of the Bardarash area
ranged from 1.05 to 8.95 ppm, with 3.65 ± 0.303 ppm being the mean and 2.18 ppm
being the StD. The data was skewed to the right skewness 1.09, which means there
were a lot of low numbers, and it had a slight peak kurtosis 0.27). A large departure
from normalcy is shown by a P-value of 0.021. There is a lot of difference in the
available P across the study area, as shown by the high CV of 59.71%. According to
the classification of Matar (1992), 48% of the soils had very little P, 46% had low P,
and only 6% had middle P. We found that the amount of K in the water was between
28 and 288 ppm, with 138.76 ppm as the mean and 56.18 ppm as the standard
deviation. A small amount of skewness was seen to the right 0.38, and the
distribution had more peaks than usual 0.81. The CV was found to be between 40.48
and 40.49 percent. However, the P-value of 0.32 showed that the distribution of
available K did not deviate from normality in a big way. Exch. Ca ranged from 30.06

65



FINDINGS M. A. Salih SALIH

 
to 200.40 ppm, with a mean value of 84.98 ppm and a CV of 35.91%, indicating
moderate-to-high spatial variability among the sampling sites. The distribution
showed slight right skewness 0.75 and near-normal kurtosis 2.66, with P-value of
0.15, suggesting an approximately normal distribution of the data. The amount of Mg
in the sample varied from 12.9 to 22.4 ppm, with 18.14 ppm as the mean 18.14 ±
0.29 ppm and 2.05 ppm as the StD. A high P-value of 0.78 meant that the
distribution was normal, even though it was slightly skewed to the left skewness
-0.24 and had a modest peak kurtosis 0.69. The CV of 11.32% indicates that there
was little variation among the soil areas.

Micronutrients found in Bardarash soils were very different, with mean
amounts going from lowest to highest in this order: Mn, Zn, Cu, Fe, and B. The Fe
levels were very different, ranging from 2.7 to 97.5 ppm, with a mean of 36.05 ±
4.27 ppm and StD 30.80. The CV was 85.42%, and the distribution had a right skew
skewness 0.79 and a flatter-than-normal curve kurtosis -1.01. A very low P-value of
0.00027 showed that there was a significant departure from normality. The B levels
varied from 0.10 to 8.84 ppm, with a mean of 1.18 ± 0.19 ppm. The data had a very
wide range of values CV 114.86%, a highly right-skewed distribution skewness 4.27,
and very high peaks kurtosis 22.01. The P-value of 0.0015 showed that the data was
not normally distributed. Cu levels varied from 1.0 to 9.16 ppm, with an average of
3.76 ± 0.27 ppm, 1.94 StD, and 51.57% CV. The data was skewed slightly to the
right 0.92, had a mild kurtosis 0.44, and a P-value of 0.53 suggesting that it was
mostly normal. Zn levels ranged from 10.0 to 99.7 ppm, with a mean of 59.44 ± 3.48
ppm and StD 25.06. The data had a moderate amount of variation CV 42.17%, a
distribution that was flatter than normal kurtosis -0.84, and a small amount of left
skew skewness -0.28. However, the high P-value 0.78 suggested that the data
followed a normal distribution. Finally, Mn levels varied from 1.05 to 9.87 ppm,
with a mean of 4.82 ± 0.28 ppm, an StD of 1.99, and a CV of 41.27%. Its distribution
was almost symmetrical skewness -0.0017, slightly platykurtic kurtosis -0.46, and a
P-value of 0.47 suggesting that it was normally distributed. For better visualization
and interpretation, the spatial distribution maps of soil macronutrients (N, P, K, Mg)
and micronutrients (Fe, Zn, Cu, Mn, B) were generated using geostatistical
interpolation OK. These thematic maps (Figures 4.7 and 4.8) illustrate the variability
and spatial patterns of these nutrients across the Bardarash district.
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Figure 4.19.  Spatial distribution of soil macronutrients (N, P, K, Ca and Mg) in
Bardarash district

67



FINDINGS M. A. Salih SALIH

 

Figure 4.20.  Spatial distribution of soil micronutrients (Fe, Cu, Zn, Mg and B) in
Bardarash district

4.2.5. Semivariogram of soil properties

Before the models were selected, the semivariograms were fitted to spherical,
exponential, Gaussian, or linear models, and the best fit with matching coefficients of
determination (R2) was visually assessed. Nugget semivariance, range, and sill (total
semivariance) were among the model parameters. The sill shows the lag distance
beyond which values are no longer spatially connected, whereas nugget semivariance
represents both field and experimental variability, displaying variance at zero
distance.

The range is the distance at which there is no longer any spatial association
between variables. Table 4.3 summarizes the model performance and spatial
variability and presents the semivariogram parameters needed to produce OK
interpolation for various soil attributes. Significant variance in geographical
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interdependence among soil properties was revealed by statistical markers as Spatial
Dependence (SD %), MAE, RMSE, and R2. For instance, there was a notable
regional dependence in the low nugget-to-sill ratios of OM and accessible Fe.

Table 4.7.  Semivariogram and error metric parameters of the soil properties in
Bardarash district

  Soil Properties   Model   Sill   Nugget
Range

SD
(%)

  MAE
RMSE

  R2

  OM (%)   Spherical   0.518   0.183   8520
35.32 -0.00022

  0.499
0.62

  Soil pH
Exponential 0.00864 0.00419

  40542
48.49 -0.00054

  0.508
0.19

  EC (dS m-1)   Gaussian
0.00822 0.00034

  2010   4.13
0.00190
9

  0.087
0.69

CEC (Cmol
kg-1)

  Linear   27.42   19.45   25304
70.93

  0.115   4.791
0.14

  CaCO3 (%)   Spherical   83.08   20.06   1537
24.14

  0.182   8.798
0.17

Avail. N
(mg/kg)

  Spherical
0.00003 0.00001

  7720
33.33

  1.13e-   0.001
0.69

  Avail. P (ppm)   Gaussian   4.38   0.16   2226   3.65   -0.0083   2.193
0.68

  Exch. K (ppm)   Spherical   2925   1053   4540   36   -0.016   55.74
0.51

  Exch. Ca (ppm)   Spherical   0.072   0.032   2005
44.44

  0.042   0.121
0.56

Exch. Mg
(ppm)

  Gaussian   3.76   0.7   1197
18.61

  -0.020   2.124
0.51

  Exch. Fe (ppm)   Gaussian   951   1.01   2100
0.106

  0.688   30.66
0.81

  Exch. B (ppm)   Gaussian   2.16   0.001   1391
0.046

  0.0305   1.343
0.41

Exch. Cu
(ppm)

  Gaussian   3.86   0.01   2230   0.25   0.0082   1.980
0.66
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  Exch. Zn (ppm)   Gaussian   629.5   1.02   2300   0.16   0.615   25.42

0.68

Exch. Mn
(ppm)

  Linear   6.56   2.79   32551
42.53

  0.0066   2.097
0.25

Bulk Density
(Mg m-3)

  Gaussian   0.012
0.00001

  1920
0.083

  0.0004   0.116
0.65

  SMC (%)   Gaussian   8.91   0.01   2900   0.11   -0.011   2.747
0.78

  Sand (%)
Exponential

  174.36   65.9   6637
37.79

  0.0065   12.20
0.33

  Silt (%)   Linear   98.83   83.98   14603
84.97

  0.099   9.084
0.19

  Clay (%)
Exponential

  68.38   15.8   4530
23.10

  -0.077   6.681
0.61

SD (%) = Spatial Dependence 

On the other hand, comparatively higher nugget values for soil pH and silt
concentration indicated poorer spatial organization. Additionally, the ranges were
quite large, ranging from localized values for accessible Mg (1,197 m) and CaCO3
(1,537 m) to widespread values for soil pH (40,542 m) and CEC (25,304 m). The
model's performance also varied, with lower R2 values for soil pH (0.189) and silt
content (0.186) reflecting weaker predictions and higher R2 values for available Fe
(0.805) and SMC (0.774) suggesting great predictive accuracy.

4.2.6. Correlation matrix between soil properties

A dendrogram is presented in Figure 4.9, which also includes the clustered
correlation matrix heatmap, to illustrate the relationships between soil and
environmental properties. The dendrogram hierarchically groups variables based on
their similarity, while the heatmap displays correlation coefficients that range from
(-1 to 1), indicating the strength and direction of associations.
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Figure 4.21.  Correlation metric with dendrograms of soil properties in Bardarash
district

The findings indicate that there are distinct clusters of variables that are
significantly correlated. For example, the presence of a single cluster containing clay
content, CEC, and OM suggests that a higher clay content is typically correlated with
higher levels of CEC and OM. Another cluster was composed of nutrient-related
variables, including available Mg, Ca, and K, which underscored their
interconnection in nutrient availability. The inverse association between soil fertility
indices and factors such as sand content and bulk density was confirmed by the
negative correlations observed. The most robust positive correlations were observed
between clay content and CEC, as well as between OM and CEC.

4.2.7. Principal component analysis (PCA) results

To determine the most important factors for calculating the SFI, PCA was
used to examine the 19 soil characteristics in Bardarash. According to Figure 4.9, the
first two main components (PC1 and PC2) combined accounted for XX% of the
variation, with PC1 alone accounting for XX%. The first few components kept the
majority of the information, as the cumulative variance plot verified. The loading
results demonstrated that whereas CaCO3 and bulk density (BD) had a stronger
effect on PC2, organic matter (OM), CEC, accessible phosphorus (P), available
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nitrogen and pH were the main contributors to PC1 (Figure 4.10).

Figure 4.22.  Assigning weight of soil properties by using PCA approach in
Bardarash district

In determining soil variability in Bardarash, these findings emphasize the
relative significance of chemical fertility attributes over physical properties. Thus,
each parameter was given a weight generated from PCA, where the parameters that
contributed more strongly to the first components were given greater weights. This
made sure that the SFI represented the main factors influencing fertility in the area.

4.2.8. Spatial distribution of soil fertility

The semivariogram analysis of the SFI in Bardarash revealed that the
spherical model offered the best fit, with a nugget value of 0.0043, a sill of 0.0072,
and a range of 14,603 metres (Table 4.4). Cambardella et al. (1994) calculated a
spatial dependence (SD) ratio of 59.72%, indicating a moderate degree of
geographical reliance. These findings indicate that soil fertility variability in the
district is impacted by both intrinsic soil qualities and extrinsic environmental
influences, which supports the use of geostatistical interpolation for fertility
mapping.

The spatial distribution patterns derived from these models are presented in
Figure 4.11, which provides a comparative visualization of fertility status across the
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study area. Understanding such regional variation is essential for effective land
management and sustainable agricultural practices.

Figure 4.23.  Feature importance of soil properties in predicting SFI using machine
learning models (RF and GBR) in Bardarash district

Based on semivariogram modeling and geographic autocorrelation, OK
generated fertility estimates using sill, nugget, and range parameters, as shown in
Table 4.4.

Table 4.8.  Semivariogram parameters of SFI in Bardarash district

  Soil properties   Model   Nugget   Sill   Range   SD %

  SFI   spherical   0.0043   0.0072   14603   59.72

Two important machine learning algorithms were uesd to predict SFI based
on the spectroradiometers wavelength. The models consistently identified the Blue,
Green, Ultralight, Red, NIR1, and NIR2 bands as the most important predictors of
SFI. This suggests that both the visible and near-infrared parts of the spectrum
include significant information about soil fertility fluctuations, allowing for the
effective application of spectroradiometer and remote sensing indices in precision
soil evaluation.

There are noticeable variations between models in the fertility categorization
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results (Table 4.5). OK classified fertility as very low at 520 km2 (45.5%), low at
497 km² (43.5%), and moderate at 125 km2 (10.09%). 316 km2 (27.68%), 738 km2
(64.69%), and 87 km² (7.36%) were classified as moderate, low, and extremely low
by RF. The GBR forecasted 285 km2 (24.97%) as moderate, 787 km2 (68.97%) as
low, and 69 km2 (6.05%) as very low. The region is dominated by low fertility
(68–70%) across all models, however GBR and RF showed more pockets of
intermediate fertility than OK.

Table 4.9.  Fertility classes resulted from geostatistical models used in Bardarash
district

  Model   Very low fertility   Low fertility Moderate
fertility

Area
(km

2
)

  % Area
(km

2
)

  % Area
(km

2
)

  %

  OK   520   45.5   497   43.5   125
10.09

  RF   87   7.36   738   64.69   316
27.68

  GBR   69   6.04   787   68.97   285
24.97

Additionally, there were differences in the spatial patterns: OK created
smoother transitions between fertility zones, with low fertility in the southwest and
moderate fertility in the north. GBR produced balanced maps that caught both subtle
heterogeneity and seamless transitions, whereas RF produced more fragmented zones
with clear borders and fine-scale detail as showed in Figure 4.12.
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Figure 4.24.  Spatial distribution of soil fertility in Bardarash district, predicted by
GBR, RF, and OK in Bardarash district

4.2.9. Accuracy assessment of spatial distribution models of soil fertility

The predictive performance of Ordinary Kriging (OK), Random Forest (RF),
and Gradient Boosting Regression (GBR) was compared using MAE, MSE, RMSE,
and R2 (Table 4.6).

Table 4.10.  Error metrics of OK, RF, and GBR in Bardarash district

  Model   MAE   MSE   RMSE   R²

  Ordinary kriging (OK)   0.0428   0.0025   0.0505   0.22

  Random forest (RF)   0.0184   0.0005   0.0228   0.83

Gradient boosting regression
(GBR)

  0.0075   0.0001   0.0087   0.97

With an R2 value of 0.22, the OK model performed the worst, explaining only
22% of the variation in soil fertility (Isaaks and Srivastava, 1989). Greater
differences between actual and anticipated values were corroborated by its higher
RMSE (0.0505) and MAE (0.0428). In comparison, the RF model performed
noticeably better. It explained 83% of the variation with an R² value of 0.83,
although reduced prediction errors were suggested by MAE (0.0184) and RMSE
(0.0228) values (Breiman, 2001). Both OK and RF performed worse than the GBR
model. Its MAE (0.0075) and RMSE (0.0087) values showed exceptionally low
prediction errors, and its R² value of 0.97 explained 97% of the dataset variation
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(Friedman, 2001). According to these findings, GBR predicts soil fertility in the
study area with the highest accuracy (Figure 4.13).

Figure 4.25.  Error metrics (MAE, MSE, RMSE, and R2) for OK, RF, and GBR in
Bardarash district
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5. DISCUSSION

5.1. Bardarash district

5.1.1. Soil fertility status and key constraints

Soils in Bardarash have low OM, low Available P, high CaCO3 content, and
moderate-to-poor CEC, according to laboratory tests. These constraints are common
in semi-arid agroecosystems, where climate constraints and intense land use
exacerbate soil deterioration. OM reduction is particularly distressing since OM is
essential for nitrogen cycling, soil aggregation, and water retention (Lal, 2020).
Continuous farming in Iraq without enough organic amendments has been shown to
increase OM loss, lowering soil fertility and resilience (Al-Ansari et al., 2014). High
CaCO₃ in calcareous soils stimulates P fixation, making it inaccessible to plants
(Frossard et al., 2000; Havlin et al., 2010). Furthermore, poor CEC limits the soil's
ability to absorb and exchange nutrients, reducing fertilizer efficiency (Brady and
Weil, 2017). Collectively, these limits underscore the study region's precarious
reproductive state and are consistent with studies from other dry locations, such as
North Africa (Noumi et al., 2011) and South Asia (Khadka et al., 2018).

According to the classification proposed by Ryan et al. (2001) and Havlin et
al. (2014), the N status in the study area varied from low to moderate, with a few
locations showing relatively higher values. The mean concentration indicates a
moderate level of nitrogen availability, suggesting that while the soils can generally
support crop growth, supplemental nitrogen fertilization may still be required to
maintain optimal productivity, especially in areas with lower N content.

According to general soil fertility classifications, all samples fall within the
Low category of exchangeable calcium, which reflects a clear deficiency in available
Ca for plant uptake. Such low levels may negatively affect the Ca/Mg and Ca/K
ratios, leading to imbalances in nutrient uptake and possible physiological disorders
in crops. The deficiency may result from leaching of Ca, low CEC, or dominance of
Na⁺ or H⁺ ions in the exchange complex.

5.1.2. Weighting approaches for soil fertility index (SFI)

Assigning suitable weights to soil factors was crucial in developing a reliable
SFI. In Bardarash, Principal Component Analysis (PCA) was used to objectively
identify factors with the highest variance contribution, such as OM, CEC, and
available N. This is consistent with previous research in which PCA was successfully

77



DISCUSSION M. A. Salih SALIH

 
utilized to eliminate redundancy among linked soil parameters and emphasize
fertility determinants (Andrews et al, 2004; Qi et al., 2009). The PCA technique
guarantees that statistically dominating characteristics have a greater effect in the
composite score, improving objectivity.

5.1.3. Spatial dependence and geostatistical analysis

The results of the semivariogram study showed a considerable geographical
dependency (SD = 59.72%), indicating that both extrinsic (management techniques,
fertilization, irrigation) and intrinsic (parent material, topography) elements influence
the variability in soil parameters. In accordance with the agricultural history of the
research area, where natural variability is layered on top of intensive farming,
Cambardella et al. (1994) categorized moderate reliance as suggestive of mixed
management.

The degree of unexplained variability is further reflected by the nugget-to-sill
ratio, which may result from human influences, small-scale variation, or sample
mistakes (Goovaerts, 1997). These results demonstrate how difficult it is to
accurately represent variations in soil fertility in semi-arid environments using
straightforward linear models.

5.1.4. Model performance: geostatistics vs machine learning

The performance of the prediction models was inconsistent. OK had poor
predictive value (R2 = 0.22), despite being commonly employed in soil mapping.
This subpar performance is probably due to its dependence on stationarity and linear
assumptions, which are ineffective in heterogeneous soils affected by nonlinear
interactions (Li and Heap, 2014).

On the other hand, RF used its capacity to manage complicated interactions
and nonlinear correlations between variables to achieve outstanding accuracy (R2 =
0.83). When it comes to mapping soil properties, RF has been praised for
outperforming linear models (Taghizadeh-Mehrjardi et al., 2016; Wiesmeier et al.,
2011). But when there are too many irrelevant characteristics, RF can occasionally
overfit.

GBR performed the best (R2 = 0.97, RMSE = 0.0087). GBR has an advantage
in capturing fine-scale variability because of its iterative error-correction and residual
optimization capabilities. Boosting algorithms often beat RF and conventional
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geostatistics in digital soil mapping investigations, according to similar findings
(Heung et al., 2016; Bhunia et al., 2022). Thus, the results confirm that machine
learning, particularly boosting models, is more suitable for predicting SFI in
heterogeneous soils than geostatistical methods alone.

5.1.5. Feature importance of spectral and soil data

The most important characteristics in predicting SFI were consistently found
to be the Blue, Green, Red, Ultralight, NIR1, and NIR2 spectral bands by both RF
and GBR. This is consistent with data showing that soil OM, texture, and moisture
have a significant impact on visible and near-infrared wavelengths (Stenberg et al.,
2010; Guerrero et al., 2016).

In particular, soil color and organic matter affect the visible bands (blue,
green, and red), whereas NIR bands record vegetation indices, moisture content, and
soil mineralogy (Mulder et al., 2011). The significant contribution of NIR1 and NIR2
implies that vegetation indices (e.g., NDVI) and VNIR spectroscopy offer vital
information for evaluating fertility, facilitating the combination of field and lab data
with remote sensing in precision soil management.

5.1.6. Spatial distribution of environmental characteristics and their effects on
soil fertility

Through their effects on erosion, microclimate, and soil–water dynamics, the
results validate that topographic factors—elevation, slope, and aspect—play a crucial
role in determining soil fertility. While gentler slopes improve soil stability and
agricultural compatibility, steeper slopes are more likely to experience erosion and
nutrient losses. This supports new research by Amare et al. (2024) and Zhou et al.
(2024), which showed that land use and slope location work together to regulate soil
nutrient variability. In line with Duan et al. (2025), who found that slope exposure
has a major impact on nutrient heterogeneity and vegetation regeneration, aspect also
affects soil fertility, with north-facing slopes holding onto more moisture and
nutrients. Similarly, convexity and elevation are important indicators of fine-scale
soil fertility in forest ecosystems, as demonstrated by Rodrigues et al. (2021). All of
these findings point to the necessity of including topographic characteristics into soil
fertility mapping and management plans in order to produce more precise forecasts
and sustainable land-use planning.

5.2. Semel disctrict 
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5.2.1. Soil fertility status and key constraints

The statistical investigation of soil attributes in the Semel region lays a solid
foundation for understanding the geographical distribution of soil fertility. As a
starting point, the statistical characteristics indicated high diversity among the major
soil qualities. For example, the CV for Avail. P, Fe, and B was quite high, showing
that the concentrations of these critical nutrients are not uniform and exhibit
significant regional variation. This conclusion is congruent with the geostatistical
concepts laid forth by Goovaerts (1997), who underlined that the spatial variability of
soil nutrients frequently determines the necessity for precision agriculture. Similarly,
the positive skewness for Avail. P and Exch. B indicate a leptokurtic distribution,
with most samples having low amounts of these nutrients but a few isolated hot spots
with high levels. This supports the visual patterns on the soil fertility map, which
reveal a predominance of low-fertility areas interspersed with a few pockets of
intermediate fertility. This sort of distribution is frequently caused by localized
variables like as focused fertilizer application or specialized micro-environmental
conditions that promote nutrient retention.

5.2.2. Spatial distribution of soil fertility 

The geographical distribution of soil fertility, as illustrated in the map and
backed by quantitative data, identifies a key problem for regional agricultural output.
The Low and Very low fertility classes account for almost 58% of the research area
(443.07 km2 and 98.09 km2, respectively). The widespread presence of nutrient-
deficient soils shows that factors contributing to soil deterioration, such as geological
limits, unsustainable land use practices, and erosion, have a dominant effect. The
substantial proportion of low-fertility soils needs a thorough and focused strategy to
soil management and conservation to prevent further deterioration and improve long-
term production.

5.2.3. Weighting approaches for soil fertility index (SFI)

To simulate this complicated system, the researchers used a strong, integrated
framework. The weighting of soil factors using the AHP-Fuzzy model, for example,
prioritized OM, CEC, and N. This hierarchical weighting is based on recognized soil
research, which identifies these measures as key markers of soil health (Brady and
Weil, 2008). This method ensures that the next machine learning model is trained on
a scientifically weighted representation of soil health, rather than a simple arithmetic
average. The effectiveness of AHP-Fuzzy models in resolving the inherent ambiguity
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of expert opinion in environmental decision-making is demonstrated in literature,
which supports the successful implementation of this technique (Mikhailov and
Tsvetinov, 2004). Multi-criteria decision analysis (MCDA), a critical component of
contemporary pedometric research, is made apparent and defensible by this method's
methodical conversion of qualitative expert opinions into a quantitative, hierarchical
structure.

5.2.4. Super vector machine performace in Semel region 

The SVM model's excellent predictive capacity, as demonstrated by an
amazing accuracy of 0.9811, is a major result that is consistent with recent advances
in digital soil mapping. This performance is similar with the findings of Taghizadeh-
Mehrjardi et al. (2020), who showed that when machine learning algorithms are
applied to a mix of environmental variables and soil data, they may achieve
exceptional success in soil property mapping. Our SVM model's improved
performance can be ascribed to the integrated study's methodological rigor. The
model was able to make use of a large, complex dataset by mixing in-situ
physicochemical soil parameters with broad-scale Sentinel 2 derived spectral indices.
The spectral indices, which reflect the geographical variability of plant cover and soil
conditions, offered important contextual information to supplement the discrete point
data from the soil samples. This synergy enabled the model to successfully
understand the complicated, nonlinear interactions that influence soil fertility across
the terrain.

5.2.5. Explainable artificial intelligence (XAI) 

The ensuing SHAP analysis gave critical insights into the model's decision-
making process, revealing that silt content and remote sensing indices such as BSI
and GNDVI were the most influential predictors of soil fertility. This conclusion
emphasizes the importance of physical soil composition and remote sensing in
capturing the geographical variability of fertility, as evidenced by research linking
these indices to soil deterioration and plant health (Gitelson et al., 1996; Al-Ghobari
and Mohammad, 2021). Conversely, the low effect of parameters such as bulk
density and NDVI, which are routinely employed in soil research, implies that their
significance in this specific SVM model is less relevant given the study area's unique
characteristics.This finding highlights the value of Explainable AI in moving beyond
a generic understanding of soil science and toward a site-specific, data-driven
identification of the most dominant predictors.
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A significant percentage of the land (41.72% or 387.44 km2) has Moderate

fertility, providing a crucial possibility for sustained agricultural growth. These
places may benefit from favorable local conditions, implying that focused actions
based on the models projections might result in large productivity gains. For
example, the substantial contribution of Exch. Cu to the SHAP analysis shows a
particular environmental stressor, presumably caused by anthropogenic activities,
necessitating site-specific mitigating measures. The LIME study improves on this by
offering granular-level interpretability, allowing land managers to grasp the specific
mix of elements (e.g., high EC and low OM) causing poor fertility at a given place,
allowing for precise, data-driven remedial measures. This capability converts the
abstract prediction model into a usable decision-support tool. By providing a clear
justification for each forecast, LIME builds stakeholder trust and encourages the
adoption of precision agricultural methods, bridging the gap between complicated
computer models and on-the-ground decisions.

Finally, this study's integrated method, which combines statistical analysis,
an AHP-Fuzzy weighting model, and an SVM-based classification with explainable
AI, provides a reliable and scientifically sound framework for measuring soil
fertility. The findings highlight the crucial need to address widespread low fertility
while also proactively managing and safeguarding communities with intermediate
fertility. This technique provides a strong, accurate, and cost-effective decision-
support tool to guide sustainable land management, promote food security, and
assure long-term agricultural sustainability in the Semel region.
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6. CONCLUSION

The exhaustive evaluation of soil fertility in the Bardarash and Semel districts
indicates that the majority of the examined regions are marked by a deplorable
fertility status, with over half of the land classified as low to extremely low fertility.
The availability of nutrients and the productivity of crops are collectively restricted
by critical limiting factors, which include high calcium carbonate (CaCO3) content
and low levels of available phosphorus (P) and organic matter (OM). The
comprehension of soil fertility dynamics was substantially improved by the
implementation of advanced modeling techniques. In Bardarash, the superiority of
machine learning in capturing intricate spatial variability was demonstrated by
Gradient Boosting Regression (R2 = 0.91) and Random Forest (R2 = 0.83), which
outperformed traditional Ordinary Kriging (R2 = 0.22). The integration of Sentinel-2
indicators, Fuzzy-AHP weighting, and explainable AI tools (SHAP and LIME) in
Semel resulted in high predictive accuracy (98%) and interpretability, with sediment
content, BSI, GNDVI, and exchangeable copper (Cu) being the most influential
factors.

While simultaneously emphasizing the potential of precision agriculture in
moderately fertile zones, these results underscore the pressing necessity for targeted
soil management interventions, including phosphorus fertilization, erosion control,
and organic matter enrichment. The study is significant in that it establishes a data-
driven, robust framework that integrates sophisticated geospatial and machine
learning techniques with traditional soil analysis. This paradigm not only enhances
the scientific integrity of digital soil fertility mapping but also provides practical
advice for sustainable land management and agricultural decision-making in semi-
arid regional areas. In order to improve fertility mapping and guarantee food security
in the face of evolving environmental conditions, future research should expand this
framework to encompass broader landscapes and integrate emerging datasets (e.g.,
hyperspectral and LiDAR).
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7. RECOMMENDATIONS

The following scientific and practical recommendations are suggested to
improve soil fertility and guarantee sustainable land management in semi-arid
regions, as supported by the results of the Bardarash and Semel districts studies:

Soil Organic Matter (OM) Improvement: Encourage the incorporation of crop
residues, as well as the use of organic amendments such as farmyard manure,
compost, and cover crops, to increase soil organic carbon, improve soil structure, and
improve water-holding capacity.

Microbial Activity Stimulation: In order to preserve soil integrity and
encourage beneficial microbial populations, implement conservation tillage
practices. Furthermore, to enhance soil health and nutrient cycling, implement
biofertilizers and microbial inoculants, including Rhizobium and mycorrhizal fungi.

Optimized Nutrient Management: Use organic and slow-release fertilizers to
reduce nutrient losses and enhance nutrient-use efficiency. Frequent soil testing
programs should be implemented to ensure that fertilizer applications are calibrated
to the actual soil need.

Fertilization Strategies Specific to the Site: Utilize precision fertilization
methods that are informed by detailed soil fertility zoning maps to optimize crop
productivity and ensure efficient nutrient allocation.

Sustainable Land Management Practices: Promote the use of rotational
grazing, intercropping, and agroforestry systems to promote biodiversity, reduce
erosion, and improve nutrient recycling. Apply contour cultivation and terracing in
sloping areas to reduce soil erosion.

Precision Agriculture Technologies Adoption: Adopt user-friendly decision
support systems (DSS) that integrate remote sensing, GIS, and machine learning
tools. Encourage the development of mobile platforms that enable producers to
access soil fertility maps and make data-driven management decisions.

Institutional Support and Capacity Building: Offer financial assistance and
incentives from the government to promote the implementation of sustainable
practices and contemporary technologies. Organize specialized training programs to
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enhance the capabilities of agricultural stakeholders and producers.

Foster partnerships among agricultural extension services, research
institutions, and producers in order to enhance collaboration and knowledge
exchange. Establish farmer field schools (FFS) as practical platforms for the
transmission of technology and the exchange of knowledge.

Monitoring and Evaluation Framework: Establish continuous monitoring
systems that utilize remote sensing and field surveys to assess the efficacy of land
management and soil fertility practices, thereby guaranteeing adaptive management
over time.

Macronutrients and Micronutrients: Integrated nutrient management strategies
are strongly advised for both macronutrients and micronutrients in order to address
the nutrient deficiencies identified in the soils under investigation. Macronutrients;
The insufficient levels of avail. N and P necessitate balanced fertilization that
incorporates both organic and inorganic sources. Depending on the crops needs, the
application of triple superphosphate or DAP (100-150 kg P2O5 ha-1) and urea or
ammonium nitrate (150-200 kg N ha-1) is recommended. K and Mg were determined
to be within acceptable limits; consequently, maintenance dosages are required.
Gypsum (CaSO4·2H2O) or agricultural lime should be applied at a rate of 1-2 t ha-1
to improve the Ca2+ exchange pool and preserve ionic balance (Ca:Mg and Ca:K
ratios) due to the low exchangeable calcium content despite the high CaCO₃ levels.
Micronutrients; The correction of Fe deficiencies and marginal levels of Mn and Zn
can be achieved by applying Fe-EDDHA, MnSO4, and ZnSO4 through foliar
application during the early growth stages. The levels of Cu and B were satisfactory;
however, they should be periodically monitored to prevent imbalances or toxicity.
The integration of micronutrient foliar coatings, biofertilizers, and organic matter
will enhance plant uptake efficiency, improve nutrient availability, and sustain soil
fertility in the semi-arid conditions of the Bardarash and Semel districts.

Land Use and Crop Suitability Suggestions: According to the comprehensive
soil fertility assessment, which includes moderate organic matter, slightly alkaline
pH, nonsaline conditions, and moderate cation exchange capacity, the soils of
Bardarash and Semel are moderately fruitful and suitable for a variety of agricultural
endeavors. Wheat and barley are cereal crops that are extremely suitable for
cultivation due to their ability to tolerate slightly alkaline and calcareous conditions.
Fruit trees, such as the apple, grape, and pomegranate, can thrive; however, they
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necessitate appropriate management of Ca, Fe, and Zn to prevent nutrient-related
disorders, including fruit shattering and chlorosis. N and P fertilizers, in conjunction
with calcium supplementation, can be used to cultivate vegetable crops (eggplant,
onion, and tomato). The current fertility status renders legume crops (lentil, chickpea,
and faba bean) less appropriate due to their low phosphorus and organic matter
contents. However, their insertion into the rotation is advised to enhance nitrogen
fixation and soil structure over time. The semi-arid agro-ecosystems of Duhok
Province will be optimized in terms of productivity, nutrient efficiency, and
sustainable land use by aligning crop selection with soil fertility classes and
instituting site-specific fertilization.

Summary of General Soil Recommendations

Effective soil fertility management requires an integrated approach that
combines physical, chemical, and biological interventions. Key practices include
enriching the soil with OM, alleviating compaction through gypsum application, and
addressing macro- and micronutrient deficiencies using tailored fertilization
strategies. Managing high soil pH through sulfur amendments and organic acids
further enhances nutrient availability.

Additionally, implementing efficient irrigation systems helps maintain soil
moisture balance and supports optimal plant performance. These practices are
essential for sustaining long-term soil productivity and ensuring the success of
diverse cropping systems across various soil types.
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