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FEN BİLİMLERİ ENSTİTÜSÜ 

MATEMATİK 
 

Tez Danışman: Prof. Dr. MAHMUT MODANLI 

Yıl: 2025, Sayfa: 43 
 

Bu tez, kesirli mertebeden Black-Scholes diferansiyel denklemini (FOBSDE) çözmek için 
yapay sinir ağlarını (YSA) kullanan yeni bir yaklaşım sunmaktadır. Bu denklem, hafıza etkilerini ve 

yerel olmayan dinamikleri dikkate aldığı için opsiyon fiyatlandırmasında finansal matematik açısından 
büyük öneme sahiptir. Önerilen yöntem, kesirli türevler ve sınır koşullarını etkili bir şekilde ele 
alabilmek için spektral yaklaşımı kaydırılmış Legendre polinomları ve yapay sinir ağı optimizasyonu 
ile zekice birleştirmektedir.Çözüm, Legendre temel fonksiyonları serisi olarak ifade edilmekte olup, 
ağırlıklar artık matrisin Frobenius normunu azaltmak amacıyla gradyan inişi yoluyla yinelemeli olarak 

ince ayarlanmaktadır. Kapsamlı sayısal testler, yöntemin doğruluğunu ve verimliliğini göstermekte ve 
geleneksel sayısal teknikleri geride bıraktığını kanıtlamaktadır. Örneğin, parametreler r = 0.05, σ = 0.2 

ve kesirli mertebe α = 0.5 ile yöntem, maksimum 1.23 × 10'(  hata ve göreli 𝐿*  hatası olarak 

2.87×10'+.	elde etmektedir. Bu sonuçlar, yapay sinir ağlarının karmaşık kesirli kısmi diferansiyel 

denklemleri çözmedeki potansiyelini vurgulamakta ve finansal modelleme için sağlam bir temel 
oluşturmaktadır. Bu araştırma, spektral teknikler ile makine öğrenimini bir araya getirerek modern 
finans mühendisliği için esnek ve ölçeklenebilir bir araç sunmaktadır. 
 

ANAHTAR KELİMELER: Yapay sinir ağları, Kesirli Black-Scholes, Kesirli Hesap, Modifiye 
Legendre. 
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This dissertation presents a novel approach using neural networks (NNM) to tackle the 

fractional-order Black-Scholes differential equation (FOBSDE). This equation is crucial in financial 
mathematics for option pricing, as it takes into account memory effects and non-local dynamics. The 
proposed method cleverly combines spectral approximation with shifted Legendre polynomials and 

neural network optimization, allowing for effective handling of fractional derivatives and boundary 
conditions. The solution is expressed as a series of Legendre basis functions, with weights that are fine-
tuned iteratively through gradient descent to reduce the Frobenius norm of the residual error matrix. 
Extensive numerical tests demonstrate the method's accuracy and efficiency, proving it outperforms 
traditional numerical techniques. For instance, with parameters r = 0.05, σ = 0.2, and fractional order α 

= 0.5, the method achieves a maximum error of 1.23 × 10'(  and a relative 𝐿*-error of 2.87×10'+. 

These results underscore the potential of neural networks in solving complex fractional partial 
differential equations, laying a strong foundation for financial modeling. This research bridges spectral 

techniques and machine learning, providing a flexible and scalable tool for modern financial 
engineering. 
 
KEYWORDS: Neural networks, Fractional Black-Scholes, Fractional Calculus, Shifted Legendre.
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1. GİRİŞ  

Over the past several years, much research and study has been carried out on 

the fractional order of Scholes differential equations (FOBSDEs) in many industries 

due to their wide application, including neural network approaches to solving the 

fractional equations of the Black-Scholes equations. (Bajalan, 2021) proffered the 

artificial neural network 2-layered to solving both fractional and ordinary Black-

Scholes PDEs by using Adam optimization. (Zhang, Yang, Zhao, 2022) In the context 

of the time fractional Black-Scholes model, researchers created an extreme learning 

machine that utilizes a Legendre wavelet neural network, showcasing enhanced 

efficiency. (Santos, Ferrira, 2024) To solve Black-Scholes equations, they applied 

neural networks by using real-world stock option data. The short-term forecasts were 

more accurate than traditional analytical solutions. (Arora et al., 2023) The Fractional 

Order Black-Scholes-Merton (FOBSM) model has been proposed. Neural networks 

and fractional calculus are integrated to capture better complex market dynamics such 

as tail behavior, memory effects, and volatility clustering. These researchers have 

demonstrated the potential of neural network methods collectively to enhance option 

pricing flexibility and accuracy in handling various forms of the Black-Scholes 

equation. 

 

In the past 300 years, fractional calculus, which is a mathematical concept, this 

subject has been extensively researched. and used in various fields. fractional order 

(FO) to Compared to the systems of integer-order, the derivatives of fractional-order 

(FO) are excellent tools for describing the internal and memory properties of various 

processes and materials in many areas with applications, such as electrical 

conductivity, negative emissions, and thermal conductivity.  

Therefore, fractional calculus has attracted the attention of engineers and physicists. 

Also, in some neural network models, the fractional computation has been applied. 

For this reason, the study of fractional neural networks (NN) is crucial for numerous 

significant outcomes in chaos dynamics, practical applications, and stability analysis 

(Younis et al., 2022). 
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To analyze and understand the construction of financial instruments, after 

discussing the BSE in modern finance, which is the most influential mathematical 

model, So the BSE is a partial differential equation developed in the 1970s as a tool to 

estimate the option over time or price of a call. Known for its integration and 

simplicity, the BSE expedited progress and revolutionized markets in financial 

mathematics. Since the BSE is a two-dimensional heat equation, its genesis is different 

(Jeff et al., 1995). 

 

In the past, research on the neural network method has moved forward considerably in 

a many different kind of areas, including solving complex mathematical issues. For 

this time, we want to use a method for solving FOBSE the mathematical software used 

to obtain the computed result and the MATLAB application. 

This study aims to explore and present the FOBSPDEs. The solution is derived 

by considering the initial and boundary value conditions, utilizing the NNM. The 

FOBSPDEs can be expressed as follows: 

 

!
𝐷:∝𝑉(𝑡, 𝑠) +

<
*
𝜎*𝑆* =

>?
=@>	

+ 𝑟𝑆 =?
=@
− 𝑟𝑉 = 0A

B

𝑉(0, 𝑆) = 𝜑(𝑆), 0 <∝≤ 1			𝑉 = 𝑉(𝑡, 𝑠)			0 ≤∝≤ 1
𝑉(𝑡, 0) = 𝑎<(𝑡), 𝑉(𝑡, 1) = 𝑎*(𝑡), 0 ≤ 𝑡 ≤ 𝜌

	8.                                      (1.1) 

 

 

 

 

1.1. Fundamental concepts 

In this section, we explore the fundamental definition and key characteristics of 

fractional-order calculus. Additionally, we provide a definition, several examples, and 

a theorem for further understanding. 
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1.1.1 Gamma Function  

Definition1.1.1.1: (Erdos and Renyi, 1960) The gamma function extends the concept 

of the factorial function to real and complex numbers, which is symbolized by Γ. 

Specifically, if 𝑘 ∈ {1,2,3, …… . }, then 

 

 

Γ(𝑘) = (𝑘 − 1)! 

 

More generally, for any positive real number 𝛼C , Γ(𝛼C	) is defined as 

 

Γ(𝛼C	) = 	∫ 𝑥DE	'<	𝑒'F𝑑𝑥G
A  ,  𝑤ℎ𝑒𝑟𝑒 𝛼C 	> 0. 

 

Note that for 𝛽	= 1, we can write  

Γ(1) = 	L 	𝑒'F𝑑𝑥
G

A
 

= 1. 

By using the change of variable 𝑥 = 𝜇𝑦, we can derive an equation that is frequently 

helpful when dealing with the gamma distribution. 

Γ(𝛼C	) = 	 𝜇DE	 	∫ 𝑦DE	'<	𝑒'HI𝑑𝑦G
A  ,  𝑤ℎ𝑒𝑟𝑒 𝛼C	, 𝜇 > 0. 

 

Additionally, it can be demonstrated using integration by parts that. 

Γ(𝛼C 	+ 1) = 	𝛼C	Γ(𝛼C	),					𝑤ℎ𝑒𝑟𝑒	𝛽 > 0	 

Note that if 𝛼C 	= 𝑘, where k is a positive integer, the above equation simplifies to. 

 

𝑘! = 𝑘(𝑘 − 1)! 
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Properties 1.1.1.2: Some properties of the gamma function 

For any positive real number 𝛼C	: 

1. Γ(𝛼C	) = 	∫ 𝑥DE	'<	𝑒'F𝑑𝑥G
A ,  

2. ∫ 𝑥DE	'<	𝑒'HI𝑑𝑥 = 	 JKD
E	L

HME	
G
A  ,  𝑤ℎ𝑒𝑟𝑒 𝜇 > 0, 

3. Γ(𝛼C 	+ 1) = 𝛼C		Γ(𝛼C	), 

4. Γ(𝑘) = (𝑘 − 1)! ,				𝑤ℎ𝑒𝑟𝑒	𝑘 = 1,2,3, ……, 

5. Γ O<
*
P = 	√𝜋. 

 

 

 

1.1.2 Beta Function 

 

Definition1.1.2.1: (Abramowitz and Stegun, 1965) The Beta function to represent by 

𝛽(𝑚C, 𝑛C) or 𝐵(𝑚C, 𝑛C) is defined as 𝛽(𝑚C, 𝑛C) = 	∫ 𝑥NE'<(1 − 𝑥)OE'<𝑑𝑥, (<
A 𝑚C > 0,	 

𝑛C > 0	). 

 

 

Properties 1.1.2.2: Some properties of the Beta function 

 

1. 𝛽(𝑚C, 𝑛C) = 	𝛽(𝑛C, 𝑚C),  

2. 𝛽(𝑚C, 𝑛C) = 2∫ 𝑠𝑖𝑛*NE'<
P
>
A 𝜃𝑐𝑜𝑠*OE'<𝜃𝑑𝜃, 

3. 𝛽(𝑚C, 𝑛C) = ∫ FQRS

(<UF)QWX
G
A 	𝑑𝑥,  

4. 𝛽(𝑚C, 𝑛C) = ∫ FQRS	U	FXRS

(<UF)QWX
G
A 	𝑑𝑥.  
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Remark 1: The connection between the gamma function and beta function 

 

𝛽(𝑥, 𝑦) = 	
Γ(	𝑥)Γ(𝑦)
Γ(	𝑥 + 𝑦) , 𝑥 > 0, 𝑦 > 0. 

 

 

1.1.3 Mittag - Leffler Function 

Definition 1.1.3.1: (Mittag, 1903) is a special function the Mittag – Leffler function 

𝐸DEYE, a complex parameter 𝛼C𝑎𝑛𝑑	𝛽C. It can be characterized by the following series 

when the real part of 𝛼C is definitely positive: 𝐸DEYE(𝑧C) = 	∑ = 	 ZE
[

J(DE\	U	YE)
G
\]A  . 

 

Properties 1.1.3.2: Some properties of the Mittag - Leffler function 

1. 𝐸<,<(𝑧C) = 	 𝑒Z
E, 

2. 𝐸*,<]𝑧C*^ = cosh(𝑧C), 

3. 𝐸*,*]𝑧C*^ = 	
_`ab	(ZE)

ZE
 , 

4. 𝐸DE,<(𝑧C) = 𝐸DE(𝑧C), 

5. 𝐸S
>,<
(𝑧C) = 	 𝑒ZE

>
𝑒𝑟𝑓𝑐(−𝑧C). 

Example 1.1.3.3: Show that 𝐸<,*(𝑧C) = 	
ef'<
Z

. 

We have  

𝐸<,*]𝑧′^ =	d
𝑧′
𝑏

Γ(b	 + 	2)

∞

𝑏=0
 

=	d
𝑧′
𝑏

Γ(b	 + 	1)!

∞

𝑏=0
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=	∑ 𝑧′
𝑏	+	1

(b	+	1)! = 	
1
𝑧′ O	𝑒

𝑧′ − 1P∞
𝑏=0 . 

Where erf is the error function. 

 

1.1.4 Caputo fractional derivative 

 

The concept of fractional integrals was used in Caputo's formulation of fractional 

derivatives. 

Definition1.1.2: (Caputo, 1967) If f: RU  → R and 𝛿 ∈ ⟨m−1, m), m ∈ N, then 

 

 

𝐶𝐷𝛿	𝑓(𝑡) =
1

Γ(𝑚 − 𝛿)
	w

𝑓(N)(𝜏)
(𝑡 − 𝜏)𝛿'NU<

:

A
	𝑑𝜏. 

 

The expression where Γ represents the gamma function is known as the Caputo 

fractional derivative of order 𝛿, depending on its existence. 

In the Caputo definition of the fractional order derivative, we start by 

calculating the ordinary derivative of a natural order, and then we find the Riemann-

Liouville integral of fractional order from that resulting function. Thus, for 𝛿 ∈ ⟨m − 

1, n), the Caputo fractional derivative C𝐷
	zf (t) exists if f ∈ 𝐶z(⟨0, t⟩). Since the Caputo 

fractional derivative is expressed in integral form, it acts as a non-local operator. This 

means it has a “memory” property, indicating that the current state is influenced by 

past states. 

As 𝛿 → m, the Caputo derivative converges to the n-th order classical 

derivative of the function f, e.g. lim
z→N

	 𝐶𝐷z𝑓(𝑡) 	= 𝑓(N)(𝑡).   

The fractional derivative, as described in formula (1.3), is clearly defined and meets 

all the specified conditions (i) through (v). 

The following theorems support this claim.  
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Let us examine functions f and g that are defined on the positive real numbers, 

f, g:RU→ R.  We assume that the Caputo derivatives of order α, α ∈ ⟨m − 1, m), m ∈ 

N, exist for these functions. 

Theorem 1.1.4.1: The Caputo derivative acts as a linear operator, which means that 

for any any a, b ∈ R, this property is valid. 

 

	𝐶𝐷𝛿	K𝑏𝑓(𝑡) + 𝑎𝑔(𝑡)L = 𝑏	𝐶𝐷	𝛿𝑓(𝑡) + 𝑎	𝐶𝐷	𝛿𝑔(𝑡). 

                   

Proof: Let 
𝐶𝐷	z𝑓(𝑡)	,𝐶𝐷	z𝑔(𝑡) Let f and g be functions whose Caputo derivatives 

are denoted as f and g, respectively. 

 Then  

	𝐶𝐷z 	]𝑏𝑓(𝑡) + 𝑎𝑔(𝑡)^ =
1

Γ(𝑚 − 𝛿)L
(𝑏𝑓(𝑡) + 𝑎𝑔(𝑡))(N)

(𝑡 − 𝜏)(z'NU<)

:

A

𝑑𝜏 = 

=
1

Γ(𝑚 − 𝛿)	p𝑏L
𝑓(N)(𝑡)

(𝑡 − 𝜏)(z'NU<)

:

A

	𝑑𝜏 + 𝑎L
𝑔(N)(𝑡)

(𝑡 − 𝜏)(z'NU<)

:

A

	𝑑𝜏q = 

=
1

Γ(𝑚 − 𝛿) 	𝑏L
𝑓(N)(𝑡)

(𝑡 − 𝜏)(z'NU<)

:

A

	𝑑𝜏 +
1

Γ(𝑚 − 𝛿) 	𝑎 L
𝑔(N)(𝑡)

(𝑡 − 𝜏)(z'NU<)

:

A

	𝑑𝜏 = 

= 𝑏	𝐶𝐷	𝛿𝑓(𝑡) + 𝑎	𝐶𝐷𝛿	𝑔(𝑡). 

 

 

Definition1.1.3: Legendre polynomials, which are defined on the interval [−1, 1], are 

derived using a series of recursive relations (H. Qu et al., 2022).  

𝑟A(𝑥) = 1, 

𝑟<(𝑥) = 1, 
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𝑟~U<(𝑥) =
2𝑗 + 1
𝑗 + 1 𝑥𝑟~(𝑥) −

𝑗
𝑗 + 1 𝑟~'<

(𝑥), 𝑗 = 1,2,3, ….		. 

The Legendre polynomial can be analytically represented as 

𝑅~(𝑥) = d
(−1)\(𝑗 + 𝑘)!

(𝑗 − 𝑘)!

~

\]A

	
(𝑗 − 𝑥)\

2\	(𝑘!)* 	 , 𝑗 = 0,1,2, ….			. 

The explicit analytical expression for the shifted Legendre polynomial of degree j, 

defined on the interval [0, X], is provided. 

𝑅�~(𝑥) =d
(−1)~U�(𝑗 + 𝑠)!

(𝑗 − 𝑠)!

~

�]A

	
𝑥\

𝑋�	(𝑠!)* 	 , 𝑗 = 0,1,2, …		. 

The limit values of 𝑅�~(𝑥)	are  

𝑅�~(𝑥) = (−1)~, 

𝑅�~(𝑥) = 1. 
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1.2 Black Scholes Equation 

 

1.2.1 History of the Black-Scholes Equation 

 

The Black-Scholes model presents a significant partial differential equation 

used for valuing financial derivatives. The importance of the Black-Scholes equation 

cannot be overstated, as it has fundamentally shaped modern finance and monetary 

markets. This discussion will explore the origins of the Black-Scholes equation and 

the impact of initiatives across the country aimed at breaking down barriers and 

promoting equity and opportunity for everyone. As the title suggests, the Black-

Scholes equation was a collaborative effort between economists Fischer Black and 

Myron Scholes (Planes and Alex, 2016). 

 

In their groundbreaking 1973 paper "The Valuation of Options and Corporate 

Obligations," financial consultant Fischer Black and emerging finance lecturer Myron 

Scholes laid the groundwork for the Black-Scholes model during the early 1970s at 

the Massachusetts Institute of Technology (MIT). This influential work introduced a 

partial differential equation that provides a framework for assessing options over a 

defined time period. Robert Merton also played a crucial role in the model's 

development, being the first to publish a paper that explained its mathematical 

foundations. For their significant contributions to the Black-Scholes model, Merton 

and Scholes received the Nobel Prize in Economics in 1997. Although Black had 

passed away two years earlier, his contributions were recognized posthumously, 

underscoring the profound impact of the Black-Scholes equation on financial markets. 

Before this model, traders of financial derivatives relied on speculation to gauge their 

value, as there was no systematic method for assessment, which introduced 

considerable risk into trading and indicated that these transactions were largely 

speculative (Planes and Alex, 2016). 

 

The Black-Scholes model has had a significant impact on financial markets, 

primarily because it provides a way to quantify the value of financial instruments. This 

breakthrough transformed options from simple speculative bets on an underlying asset 

into instruments that can more accurately reflect the asset itself. As a result, market 
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participants were able to trade these options with a better grasp of their intrinsic value. 

This advancement led to the creation of derivative markets and options exchanges, 

which now boast an astonishing value of $710 trillion. In the following sections, we 

will examine each part of the Black-Scholes equation and look into its historical 

background, which will deepen our understanding of how this model has 

fundamentally changed modern financial markets (Planes and Alex, 2016). 

 

1.2.2 Evolution of an Asset 

 

 

Before exploring the behavior of an asset, it's important to clarify what a 

financial asset is and what it entails. An asset is essentially an economic resource that 

holds value and influences market actions. Assets vary widely in form and function, 

and they can be utilized in numerous ways. Individuals engage in buying, trading, and 

selling assets with the expectation of generating positive economic returns. You can 

think of assets as a type of economic currency, and like paper money, their value can 

fluctuate over time, sometimes significantly. 

Take stocks, for example. A stock represents a share of ownership in a corporation. If 

I invest $20 in stock, I own an asset that has the potential to generate profit because it 

holds value. However, the potential for profit is contingent on the fluctuating value of 

the shares. To maximize my profit, I need to understand when and how the value of 

my stock will change. Price optimization is a key goal in all financial markets, and 

achieving it relies heavily on mathematical models (Planes and Alex, 2016). 

 

If the company I've invested in launches a successful new product, it's likely 

that my shares will increase in value. On the other hand, if the company reports 

disappointing quarterly earnings, the share price could drop. The next page features a 

graph showing the changes in value of a specific asset, namely Coca-Cola stock 

(Planes and Alex, 2016). 

 

Take note of the erratic and unpredictable parts of the graph. This volatility is 

exactly what complicates the creation of mathematical models. Financial models aim 
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to illustrate the path of an asset to predict future values and highlight significant trends 

(Planes and Alex, 2016). 

 

 

 

Figure 1.2.1: The chart displays the KO stock price over a designated time frame (Planes 

and Alex, 2016). 

 

We aim to create a model that captures how an asset's price, represented as 𝑆, 

changes over time. To explore this, we will define a return that indicates the relative 

change in price. At a specific time, 𝑡, the asset's price is 𝑆, and after a short time 

interval, 𝑡	 + 	𝑑𝑡, it changes to S + dS. This indicates a small adjustment in 𝑆 by an 

infinitesimal amount, 𝑑𝑆, over a tiny duration, dt. In our analysis of the asset's return, 

we look at 𝑑𝑆 in relation to 𝑆, as this ratio gives us the expression 𝑑𝑆/𝑆. Traditional 

financial models usually break down the return into two main components: the 

stochastic part and the deterministic part. The deterministic component, which can be 

compared to a risk-free return on investment, is denoted as 𝜑𝑑𝑡 and is often considered 

a constant in basic financial models, although the parameter µ may vary in more 

advanced models (Planes and Alex, 2016). 
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The second element captures the unpredictable nature of asset prices, 

represented as 𝜎𝑑𝑋. Here, 𝜎 stands for the asset's volatility, which is precisely defined 

as the standard deviation of its returns. More broadly, volatility can be seen as the level 

of risk associated with the asset's value. Asset prices are naturally subject to change, 

with some assets showing greater fluctuations than others, which adds a risk 

component to investment choices; 𝜎 is used to quantify this risk (Planes and Alex, 

2016).  

 

Volatility, defined by the standard deviation, measures how much historical 

return data points differ from their average. By looking at the historical returns of an 

asset and how they are distributed over time, one can assess the level of volatility. A 

wider range of these data points from the average suggests higher volatility. The topic 

of asset volatility is important and will be explored in more detail later in this chapter. 

It's important to note that 𝜎 is modified by 𝑑𝑋, which signifies a random sample drawn 

from a normal distribution. The decision to use a sample from a normal distribution 

stems from the need to model a random and variable phenomenon (Planes and Alex, 

2016). 

 

The Central Limit Theorem clearly states that when you have a sufficient 

number of random variables, their average will approximate a normal distribution. 

This is the reason 𝑑𝑋 is considered a random variable taken from a normal distribution. 

By integrating these components, we can represent our return through a stochastic 

differential equation. 

 

𝑑𝑆
𝑆 = 𝜎𝑑𝑋 + 𝜑𝑑𝑡 

This equation describes a random walk, which is made up of a series of 

discrete, stochastic steps. Random walks are widely used in various fields, particularly 

in finance. As shown in Figure 3, a random walk is illustrated by a connected series of 

discrete points on a graph. The importance of random walks lies in their function as a 

mathematical model that mimics real-world phenomena. This is especially relevant in 

the context of the model mentioned earlier, as it enables us to explore the interactions 
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between our variables. When we look at 𝑆 over a small-time interval 𝑑𝑡, 𝑑𝑆 can be 

seen as a step in this sequence. It is well-known that asset prices in financial markets 

tend to follow a random walk pattern. However, it is essential to understand the 

specific implications of this idea. Random walks do not yield precise predictions of 

asset prices; instead, they provide useful probabilistic insights into how assets behave 

(Planes and Alex, 2016). 

 

 

Figure 1.2.2: A lognormal distribution (Planes and Alex, 2016) 

 

The concept of random walks being "memoryless" highlights their significance 

in various theoretical frameworks. In particular, random walks are categorized as a 

type of Markov process, which embodies essential properties linked to this 

classification. We can now examine the random walk described by the stochastic 

differential equation. If an asset S adheres to the random walk defined by this equation, 

the probability density function of the related random variable approximates a slightly 

skewed normal distribution, known as a lognormal distribution. A lognormal 

distribution is defined as a continuous distribution where the natural logarithm of the 

variable is normally distributed. This distribution is especially important in the context 

of the Black-Scholes model, as it effectively eliminates negative values, reflecting the 

reality that asset prices cannot be negative (Planes and Alex, 2016). 
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1.2.3 Black-Scholes Derivation 

 

In deriving and analyzing the Black-Scholes equation, we will first explore the 

stochastic differential equation that underpins it. 

 

                                   �@
@
= 𝜎𝑑𝑋v

		��a���
+	 𝜑𝑑𝑡w

������`a`_�`�

                                             (1.2.1) 

            

 

Here, 𝜑𝑑𝑡 is the average rate of growth of the asset price, which is predictable. 

This part of the equation is often referred to as "the drift." On the other hand, 𝜎𝑑𝑋 

represents the volatility of the underlying asset and is completely random. To gain a 

clearer understanding of the mechanics of (3.1), we will consider a function of 𝑆, which 

denotes the value of the underlying asset. We can take 𝑓(𝑆) and expand this 

function.𝑑𝑓 = ��
�@
𝑑𝑆 + <

*
	�

>�
�@>

𝑑𝑆* +⋯ By varying 𝑆 by a small amount 𝑑𝑆, we can see 

that it is equivalent to varying 𝑓(𝑆). This concept is vital not only for deriving the 

Black Scholes equation but also for grasping the underlying principles of that 

derivation. Additionally, this idea highlights the importance of Ito’s Lemma, which is 

a key tool in the derivation process. 

 

𝑑𝑓 = ��
�@
𝑑𝑆 + <

*
	�

>�
�@>

𝑑𝑆* +⋯                                                                               (1.2.2) 

 

Along with this expansion, we will also present another crucial result in the derivation. 

We assert that 𝑑𝑋* converges to 𝑑𝑡 as 𝑑𝑡 approaches 0. In simpler terms, as dt gets 

smaller (meaning the time interval decreases), 𝑑𝑋* increasingly resembles 𝑑𝑡. Now, 

let's examine (3.1). 

𝑑𝑆* =	 (𝑆𝜎𝑑𝑋 + 		𝑆𝜑𝑑𝑡)* 

=	𝜎*𝑆*𝑑𝑋* + 2𝜑𝜎𝑆*𝑑𝑋𝑑𝑡 + 𝜑*𝑆*𝑑𝑡* 
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Given that 𝑑𝑋 = √𝑑𝑡, 

 

=	𝜎*𝑆*𝑑𝑡 + 2𝜑𝜎𝑆*𝑑𝑡
(
* + 𝜑*𝜎*𝑑𝑡* 

 

as 𝑑𝑋 = √𝑑𝑡 

 

We observe that 𝜎²𝑆²𝑑𝑋² is the primary term since we are focusing on a small 

𝑑𝑡. This stems from the concept that examining the behavior of 𝑑𝑆 over the smallest 

time interval will yield the most precise assessment of the asset. Therefore, 

 

                                                 𝑑𝑆* =	𝜎*𝑆*𝑑𝑋* +       …⏟
�a_`�a`�`��a�	b`�b��	�����	����_

 

⟹ 𝑑𝑆* =		𝜎*𝑆*𝑑𝑋*	. 

 

The dots represent the higher order terms that are not taken into account since 

the leading term produces the smallest 𝑑𝑡. Now, if we substitute this into equation 3.2, 

we have: 

𝑑𝑓 =
𝑑𝑓
𝑑𝑆
(𝑆𝜎𝑑𝑋 + 𝑆𝜑𝑑𝑡) +

1
2	
𝑑*𝑓
𝑑𝑆* 𝜎

*𝑆*𝑑𝑡 

= 𝜎𝑆𝑑𝑋
𝑑𝑓
𝑑𝑆 + 𝜑𝑆

𝑑𝑓
𝑑𝑆 𝑑𝑡 +

1
2	
𝑑*𝑓
𝑑𝑆* 𝜎

*𝑆*𝑑𝑡 

= 𝜎𝑆𝑑𝑋 ��
�@
+ O𝜑𝑆 ��

�@
+ <

*
	�

>�
�@>

𝜎*𝑆*P𝑑𝑡. 

 

In applying It	𝜎’s lemma, we have connected a small change in a function of a 

variable to a small change in the variable itself. It's important to note that this same 

approach can be extended to a function of two variables, such as 𝑓(𝑆, 𝑡).	Here, the 

independent variables are S, representing the value of the underlying asset, and t, 
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which denotes time. Below is the result for 𝑉(𝑆, 𝑡), where 𝑉 indicates the value of a 

portfolio. 

 

𝑑𝑉 = 𝜎𝑆 =?
=@
𝑑𝑋 + O𝜑𝑆 =?

=@
+ <

*
𝜎*𝑆* 	=

>?
=@>

+ =?
=:
P𝑑𝑡. 

 

From here, we will derive the Black-Scholes equation. To achieve this, let's 

create a portfolio: 

Π = 𝑉 − ∆𝑆. 

 

This portfolio includes a single option 𝑉, and we assign a number to ∆ that 

scales the underlying asset, S. This scaling factor will subsequently modify the value 

of the option and, in turn, the overall portfolio. We will determine a value for ∆ later, 

but a logical choice will arise that will be significant in the final stages of the 

derivation. Based on our definition of the portfolio, we can state that the change in the 

value of this portfolio over one-time step is: 

 

dΠ = 𝑉 − ∆𝑑𝑆. 

 

Substituting 𝑑𝑉 and 𝑑𝑆	above yields, 

 

dΠ = 	𝜎𝑆
𝜕𝑉
𝜕𝑆 𝑑𝑋 + 𝜑𝑆

𝜕𝑉
𝜕𝑆 𝑑𝑡 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆* +

𝜕𝑉
𝜕𝑡 𝑑𝑡 − ∆𝑆𝜎𝑑𝑋 − ∆𝑆𝜑𝑑𝑋 

 

= (𝜎𝑆
𝜕𝑉
𝜕𝑆 − ∆𝑆𝜎)𝑑𝑋 + �𝜑𝑆

𝜕𝑉
𝜕𝑆 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆* +

𝜕𝑉
𝜕𝑡 + ∆𝑆𝜑�𝑑𝑡 

= 𝜎𝑆(
𝜕𝑉
𝜕𝑆 − ∆)𝑑𝑋�����������

��a���	����`�a

+ �𝜑𝑆
𝜕𝑉
𝜕𝑆 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆* +

𝜕𝑉
𝜕𝑡 + ∆𝑆𝜑�𝑑𝑡. 
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We can now observe how a natural choice for	∆ arises, which will remove the 

random element found in the natural walk. This clearly leaves us with only the 

deterministic component, enabling us to more accurately predict asset behavior. 

 

𝜕𝑉
𝜕𝑆 = ∆ 

 

⟹ 𝑑Π = �
𝜕𝑉
𝜕𝑆 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆*�𝑑𝑡. 

 

Here we explore a more nuanced concept of supply and demand known as 

arbitrage. Arbitrage involves the ongoing buying and selling of assets to take 

advantage of price discrepancies. Due to the presence of arbitrage in the market, we 

can relate the return of a portfolio Π to a risk-free return from an investment, 

represented as 𝑟Π𝑑𝑡. 

 

⟹ 𝑟Π𝑑𝑡 = O=?
=@
+ <

*
𝜎*𝑆* 	=

>?
=@>
P𝑑𝑡. 

 

Substituting our portfolio and our ∆ into the above equation yields, 

 

𝑟(V −	∆S)𝑑𝑡 = �
𝜕𝑉
𝜕𝑆 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆*�𝑑𝑡 

⟺
𝜕𝑉
𝜕𝑆 +

1
2𝜎

*𝑆* 	
𝜕*𝑉
𝜕𝑆* + 𝑟𝑆

𝜕𝑉
𝜕𝑆 − 𝑟𝑉 = 0. 

 

Finally, we have derived the Black-Scholes equation presented above (Planes and 
Alex, 2016). 
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1.3 Neural Network  

The origins of artificial Neural Networks date back to 1940, when researchers 

Walter Pitts and Warren McCulloch showed that neurons in the human brain perform 

logical operations and produce binary outputs based on a specific threshold, indicating 

whether they are activated or inactive. This groundbreaking discovery led to the 

development of mathematical models that attracted significant attention in the 

Artificial Intelligence community. However, at that time, the emerging field of 

computing was not ready to handle such complex algorithms. As a result, interest in 

Neural Networks diminished as researchers turned their attention to other methods that 

seemed more promising. A major turning point came in 1970 with Seppo Linnainmaa's 

introduction of Backpropagation, which greatly enhanced the effectiveness of Neural 

Networks. Still, these models remained largely overlooked until 2012, when students 

achieved remarkable results in the ImageNet Large Scale Visual Recognition 

Competition, reigniting interest in Neural Networks within the Artificial Intelligence 

field (Lichtner-Bajjaoui, 2020). 

 

1.3.1 Mathematical definition of a Neural Network  

The basic concept of a Neural Network is to develop a model that learns from 

a collection of N samples. 

 

                       𝐷 = {[𝑎<, … , 𝑎�], [𝑏<, … , 𝑏�]}                                         (1.3.1) 

 

will approximate an unknown function	𝑓, with  

 

𝑓(𝑎�) = 𝑏� . 

 

The model typically consists of one input layer, one output layer, and at least one 

hidden layer. These layers are interconnected through weighted transitions, which can 

be represented by multiplying a weight matrix with a vector that represents the output 

from the previous layer. Each layer is made up of several units known as neurons. The 

number of units in each layer determines the layer's dimension. The activation 
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functions within the neurons act as thresholds, deciding whether the information 

received by a neuron is relevant for further calculations. If the information is deemed 

relevant, it is passed on to the next layer until it reaches the output layer. During the 

training phase, the model is provided with a sample dataset 𝐷, where the matrix 

[𝑎<, … , 𝑎�] serves as the input and [𝑏<, … , 𝑏�]	as the output matrix. After processing 

each sample (𝑎� , 𝑏�) 	∈ 	𝐷, the model measures the difference between its output and 

the actual desired output 𝑏� using a loss function, such as the 𝐿*-norm or the Euclidean 

norm. Based on these results, the weights of the transitions are adjusted to improve 

performance in the next iteration. The input layer's dimension is determined by the 

input data's dimension, while the output layer's dimension corresponds to the problem 

being solved. For instance, in a regression task, the output layer will have a dimension 

of one, as the model aims to assign a single value to each input. In contrast, for a 

classification problem, the output layer will have a dimension of 𝑘, where 𝑘 represents 

the number of different categories into which we want to sort the data. With a 

sufficiently large sample, the model is expected to provide a good approximation of 

the desired output. Next, we will seek to identify the best estimator 𝐹� of 𝑓 that meets 

our criteria. 

 

𝐹�(𝑎�) = 𝑏� . 

That means the best approximation of 𝑓 for given observation 𝐷. Then we will apply 

𝐹� to unknown values 𝑧 to make a prediction or classification (Lichtner-Bajjaoui, 

2020). 

  Definition 1.3.2: Let 𝑎� ∈ ℝO and 𝑏� ∈ ℝO for all 𝑖 ≤ 𝑁	 ∈ ℕ 

𝐷:= {[𝑎<, … , 𝑎�], [𝑏<, … , 𝑏�]}. 

 

The sample of size 𝑁. Let  

 

𝐴 ∶= [𝑎<, … , 𝑎�]. 
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Let 𝑛	 × 	𝑁 be a matrix that contains the training input vectors 𝑎� from a sample 𝐷, 

which has a size of 𝑁. From now on, we will refer to 𝐷 as the training set. 

 

𝐵 ∶= [𝑏<, … , 𝑏�] 

 

will model the corresponding observed training output vectors 𝑏� and form a 𝑘	 × 	𝑁 

matrix (Lichtner-Bajjaoui, 2020). 

Definition 1.3.3: By 𝐶 ∶= [𝑐<, … , 𝑐�] we denote the test set with test vectors 𝑐� ∈ ℝO 

(Hastie et al, 2009). 

Definition 1.3.4: Let  𝐴�  be an 𝑛- dimensional random vector representing the random 

selection of training input vectors 𝑐�. The random vector 𝐶 represents the selection of 

test data. We will denote 𝐵�    as a 𝑘- dimensional random vector that models the 

network's output for all possible inputs (Lichtner-Bajjaoui, 2020). 

Definition 1.3.5: A function 𝐹 ∶ ℝO 	→ 	ℝ\ represents the network activity and maps 

input vectors to output vectors (Lichtner-Bajjaoui, 2020). 

  The function 𝐹 satisfies 

𝐹(𝑎�) + 𝜖� = 𝑏� , 

where 𝜖� is a random variable with unknown distribution 𝐽�that describes the noise that 

is produced by the unknown values 𝑍.  

Our objective is to train the network by adjusting the function 𝐹 so that it closely 

approximates 𝑓. This is achieved by minimizing a risk function 𝑅, which is influenced 

by the selected model 𝐹. The risk function is determined by integrating a loss function 

𝐿 that quantifies the approximation error. 

𝑅(𝐹) = ∫ 𝐿 O𝐵�, 𝐹]𝐴�^P 𝑑𝐽]𝐴�, 𝐵�^,                                                                         (1.3.2) 
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Given the unknown joint distribution of (𝐴�,	𝐵� ). 

we are unable to compute the integral due to a lack of information about the 

measure 𝐽. Therefore, our approach will focus on minimizing the average loss within 

the sample 𝐷, based on the provided observations (𝐴�,	𝐵� ). 

 

𝑅�(𝐹) =
1
𝑁d𝐿]𝑏� , 𝐹(𝑎�)^.

�

�

 

 

We can understand, however, that an optimal solution to (1.3.2) must satisfy  

𝐹(𝑎�) = 𝐸(𝐵�|𝑎�) .                                                                                                (1.3.3) 

This represents the expected value of 𝐵� , given that we already have the output of 𝑎�. 

To clarify this connection, let's consider the following example (Lichtner-Bajjaoui, 

2020). 

 

Example 1.3.5: Let the loss function 𝐿 be the quadratic error that is  

 

𝐿]𝑏, 𝐹(𝑎)^ = (𝑏 − 𝐹(𝑎))*. 

 

Calculating the risk for this loss function we obtain 

 

 

𝑅(𝐹) = L]𝑏 − 𝐹(𝑎)^*𝑑𝐽(𝑎, 𝑏) 

= 𝐸 �O𝐵� − 𝐹]𝐴�^P
*
� 

= 𝐸 �O𝐵� − 𝐸]𝐵�|𝐴�^ − 𝐸]𝐵�|𝐴�^ − 𝐹]𝐴�^P
*
� 
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= 𝐸 �O𝐵� − 𝐸]𝐵�|𝐴�^P
*
� + 𝐸 �O(𝐸]𝐵�|𝐴�^ − 𝐹]𝐴�^P

*
� 

 

+2𝐸 �O𝐵� − 𝐸]𝐵�|𝐴�^P O𝐸]𝐵�|𝐴�^ − 𝐹]𝐴�^P�. 

 

Notice that since 𝐸]𝐵�|𝐴�^ is a projection of 𝐵�  on the sub-σ-field generated by 𝐴� it 

follows that O𝐵� − 𝐸]𝐵�|𝐴�^P is orthogonal to 𝐸]𝐵�|𝐴�^. We can conclude therefore, by  

𝑅(𝐹) = 𝐸 �O𝐵� − 𝐸]𝐵�|𝐴�^P
*
� + 𝐸 �O(𝐸]𝐵�|𝐴�^ − 𝐹]𝐴�^P

*
� 

 

that the best choice of	𝐹 to minimize	𝑅 is the conditional expectation  

 

𝐹(𝑎) = 𝐸(𝐵�|𝑎). 

 

Definition 1.3.6: 𝐹�:	ℝO 	→ 	ℝ\ 		denotes an estimator that satisfies 

 

	𝐹�� =
argmin 	𝑅(𝐹).

𝐹
                                                                                            (1.3.4) 

 

 

For a given sample S. 

 

It is not always clear whether the optimal estimator E (𝐵� |a) exists within the 

set of functions that the network can implement or that meet specific criteria for the 

approximating function, such as continuity. We refer to the difference between E (𝐵� |a) 

and 𝐹� as the error (Lichtner-Bajjaoui, 2020). 
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2. ÖNCEKİ ÇALIŞMALAR   

 

The Black-Scholes-Merton Fractional Order Model (FOBSM) improves 

pricing accuracy by combining the traditional Black-Scholes-Merton model with 

neural networks and a fractional accounting framework. This approach overcomes the 

limitations of standard methods and better captures market behaviors like memory 

effects and volatility clustering. The results show that this hybrid method greatly 

enhances price forecasting accuracy in complex economic situations. This research 

marks an important step in bridging theoretical models with the complexities found in 

real-world financial markets (Arora et al., 2023). 

 

For resolving fractional differential equations, the study offers an innovative 

method of initial values using neural networks based on cosine functions. for the two 

single and integral fractional differential equations Numerical solutions have been 

obtained by repeated training; the effectiveness of the method is shown by computer 

illustrations and numerical results (Qu and Liu, 2015). 

 

The approach's effectiveness in tackling fractional Black-Scholes equations 

has been demonstrated, highlighting its simplicity and high accuracy. This is 

accomplished by using the Aboodh decomposition method to solve the Black-Scholes 

fractional partial differential equation that involves two assets. The method integrates 

the Adomian decomposition technique with the Aboodh transform and has been 

suggested for solving both nonlinear and linear fractional differential equations (Al 

faqeih and Ozis, 2020). 

 An extreme learning machine paired with a Legendre wavelet neural 

network can effectively tackle the time fractional Black-Scholes model. The challenge 

of pricing European options was approached using algebraic equations, leveraging the 

operational matrix of the fractional derivative based on the two-dimensional Legendre 

wavelet. The network design focuses on minimizing overfitting while improving the 

learning process. A related study that used the implicit differential method shows that 

this proposed strategy provides a strong numerical solution. This technique is 

especially beneficial since the time fractional Black-Scholes model poses more 

difficulties than the integer-order model. The research highlights the effectiveness of 
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the LWNN-ELM in pricing European options. The suggested method is efficient in 

terms of time, and experimental findings reveal that it converges at first order for α < 

1. Thanks to its flexibility and user-friendliness, this approach is ideal for pricing 

various European options within similar fractional models (Zhang et al., 2022). 

 

Using the Black-Scholes equation enables the evaluation of an option's value 

by considering the time left until expiration and the price of the underlying asset. In 

more intricate situations, closed-form solutions are required, with analytical solutions 

relying on stable interest rates and volatility. This study utilized artificial neural 

networks to effectively derive a closed-form solution, allowing for quick and precise 

calculations of option values. Furthermore, this method can also be used to estimate 

stock volatility, as highlighted by (Gonzalez, 2019). 

 

This research presents a two-layer artificial neural network (ANN) aimed at 

solving the Black-Scholes partial differential equation (PDE), applicable to both 

ordinary and fractional orders. The model uses a categorization technique to transform 

the PDE into a series of ordinary differential equations (ODE). The ANN then employs 

the Adam optimization algorithm to solve these ODEs. To tackle issues related to 

unbounded domains and precision, the methodology integrates domain mapping and 

fine-tuning strategies. The study's findings demonstrate the convergence, accuracy, 

and efficiency of this approach in addressing various Black-Scholes models. By 

utilizing a limited number of training points and hidden neurons, along with simple 

calculations and parallel processing, the neural network effectively leverages the 

Adam optimizer to solve financial equations. This method is beneficial for pricing a 

range of options and tackling different partial differential equations across various 

fields, thanks to its fault tolerance and fine-tuning capabilities, which improve its 

speed, accuracy, and reliability (Bajalan, 2021). 

 

This study presents the radial basis functions (RBFs) method as an effective 

approach to solving the fractional Black-Scholes-Schrodinger equation, particularly in 

the realm of financial option pricing. By using a straightforward quadrature formula 

in the Caputo sense, the RBFs method successfully categorizes approximate temporal 

fractional derivatives along with spatial derivatives. The analysis includes cases of 
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time step arbitrage bubbles and time linear arbitrage bubbles, which are demonstrated 

through numerical examples and backed by mathematical validation. The findings 

show that the RBF technique yields option prices that are consistent with semiclassical 

solutions. This method skillfully tackles the fractional Black-Scholes-Schrodinger 

problem by applying a simple quadrature formula for temporal fractional derivatives 

while also classifying spatial derivatives. Additionally, the effect of changing the 

fractional order on option pricing is demonstrated by comparing numerical solutions 

obtained from the RBFs method with semiclassical solutions. The study validates the 

effectiveness and reliability of the RBFs approach in addressing the fractional Black-

Scholes-Schrodinger equation through stability analysis and calculations of L2 relative 

error (Nuaslsaara et al., 2020). 

 

A new numerical method is proposed for solving the Black-Scholes Partial 

Differential Equation by tackling the related second-order Ordinary Differential 

Equation in two phases, using a hybrid Block Method of Order seven. This approach 

guarantees key features such as zero stability, order, consistency, convergence, and a 

region of absolute stability. It is developed through collocation and interpolation 

techniques. After reformulating the Black-Scholes equation into a system of second-

order ordinary differential equations, the method is applied to solve it, showing 

improved accuracy compared to previous methods. Furthermore, the hybrid approach 

demonstrates greater precision when compared to an explicit method (Olaiya et al., 

2019). 

 

The activation function is essential in machine learning models that use 

artificial neural networks. This research investigates the use of the sigmoid function as 

an activation function, applying a fractional derivative approach to minimize 

backpropagation convergence error and improve generalization performance. The 

study centers on the proportional Caputo definition as a fractional derivative and 

evaluates its impact on neural network models. Results show that Caputo's 

classification method typically surpasses traditional derivative models in classification 

accuracy. Furthermore, various fractional definitions of derivatives and their limits 

have been analyzed, with Caputo's formulations standing out. An innovative hybrid 

fractional model is introduced, which boosts performance in handwritten digit 
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recognition tasks by combining fractional and Caputo fractions. The proposed 

fractional translation method opens up new avenues for exploration in this field and is 

especially beneficial for enhancing machine learning models (Altan et al., 2022). 

 

Describes the method of solving the Black-Scholes equations regarding the 

value of a European call option by applying artificial neural networks. For researchers 

to get accurate results, the study studies methods for optimization such as gradient-

type monotonous iteration processes and particle swarm optimization, along with 

presenting a feed-forward neural network model. The neural network underwent 

training utilizing the particle swarm optimization method utilizing experiments based 

on different population initialization methods. The data show that the suggested 

approach effectively and precisely forecasts European call options; the best results 

occur when PSO with Halton initialization is utilized throughout an 81x81 mesh size 

with a single-layered network structure composed of 5 neurons. Additionally, the study 

brings awareness to the limitations of applying gradient descendant optimization to 

this particular issue and suggests additional investigations in other population-based 

optimization methods. It emphasizes how important parameter setting is for global 

optimization methods and neural networks, as well as how the most effective way for 

figuring out parameter values is through cross-validation. The best, worst, and average 

errors for 25 experiments using different beginning situations are shown, showing how 

crucial it is to choose the right parameters so as to obtain a precise response (Gunel et 

al., 2021). 

 

In an attempt to obtain a faster reply, it studies the application of artificial 

neural networks instead of numerical methods in the pricing of Apple's European 

phone options. Predictions are compared to numerical and analytical responses for the 

Black Scholes Merton model and the stochastic HESTON variance model that can be 

solved utilizing a neural network. By creating a deep learning model that understands 

financial theory as well as effective option pricing, this study aims to provide a timely 

update on existing quantitative option pricing models. While the results are promising, 

there remains space for improvement with regards to computational complexity and 

accuracy. The next study may use a neural network to solve the PDE in all its parts 
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without any need for testing or training, which will drastically cut down on 

computation time (Yadav, 2018). 
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3. GEREÇ VE YÖNTEM  

 

3.1. Material 

To strengthen this thesis, significant research has been conducted, including a 

review of relevant academic publications, journals, and master's thesis. Furthermore, 

results were gathered using mathematical software, with the initial solution generated 

through the MATLAB program. 

 

3.2. Neural Network Method 

A thorough investigation was conducted to explore both historical and 

contemporary research related to solving FOBSDEs. The numerical network 

method was employed to determine approximate solutions for FOBSDEs. This 

study included a comparative analysis, contrasting the approximate results with 

the exact solutions, which helped in creating an error analysis chart. The MAPLE 

software was utilized to simulate both the exact and approximate solutions. 

 In this Section, we will talk about how NNM works to FOBSDE. Using the 

similar method (Biswas et al., 2023): 

𝑉�(𝑡, 𝑥) = ∑ ∑ 𝑢�~
���

~]A
� 
�]A 𝐿¡,�	(𝑡)	𝐿F,~	(𝑥).                                                           (3.2.1) 

In the last section, we introduced the shifted Legendre polynomials, 𝐿¡,�	(𝑡)and 

𝐿F,~	(𝑥). As a result, the function 𝑉�(𝑡, 𝑥) outlined in equation (3.2.1) is continuous 

across the domain [0, 1] × [0, 1]. The neural networks tweak the weights to minimize 

the loss function using the unknown weights 𝑢�~
� , where i ∈ {0, 1, . . ., Mx} and   j ∈ 

{0, 1, . . ., Mt} which are initially set randomly. The model described in equation (1.1) 

will be approximated by integrating the test solution 𝑉�(𝑡, 𝑥) with the unknown 

weights 𝑢�~
� ,, and through a process of iterative training, these unknown weights will 

be adjusted. The basic functions 𝐿¡,�	(𝑡), and 𝐿F,~	(𝑥)	 have their time and spatial 

derivatives derived from model (1.1). To kick off this process, we will first calculate 

the time derivative. For simplicity in our analysis, we will consider. 

where 
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𝐿¡,�	(𝑡) =d
(−1)�U�(𝑖 + 𝑠)!

(𝑖 − 𝑠)!

�

�]A

	
𝑡�

𝑇�(𝑠!)* 	 , 𝑖 = 0,1,2, ….	 

𝑇(𝑡) = [	𝐿¡,A	(𝑡), 𝐿¡,<(𝑡), …	, 𝐿¡,� 	(𝑡)	] 

𝐷:∝A
B 𝑇(𝑡) = [0, 𝐿¡,<∝ (𝑡), 𝐿¡,*∝ (𝑡), …	, 𝐿¡,� 

∝ (𝑡)] 

𝐷:∝A
B 𝐿¡,�(𝑡) = 𝐿¡,�∝ (𝑡) = 	d

(−1)�U�(𝑖 + 𝑠)! 𝑡�'∝

(𝑖 + 𝑠)! 𝑠! 𝑇�Γ(𝑠 + 1−∝)

�

�]A

	 , 𝑖 = 1,2, ….	 

The parameter for the training dataset is chosen based on uniform grid points. 

𝑡N =	 (N'<)¡
(�Q'<)

	 , 𝑥O =	
(O'<)�
(�X'<)

	    𝑚 ∈ {1,2, … ,𝑀N}, 	    𝑛 ∈ {1,2, … ,𝑀O} 

§ 𝐷F∝A
B 𝐿F,~(𝑥) = 	d

(−1)�U�(𝑖 + 𝑠)! 𝑥�'∝

(𝑖 + 𝑠)! 𝑠! 𝑋�Γ(𝑠 + 1−∝)

�

�]A

¨ 

Substituting (3.2.1) into the model (1.1) and using Eq. (3), the errors 𝑒𝑟N,O
�  at 

sample point (tm, Sn) for non-initial states 𝑚 ∈ {1,2, … ,𝑀N − 1}, 	    𝑛 ∈

{1,2, … ,𝑀O − 1} are calculated as  

𝑒𝑟N,O
� =dd𝑢�,~

� 	𝐿¡,�∝ 	(𝑡)	𝐿F~(𝑥)
��

~]A

� 

�]A

+dd
1
2 	𝑢�,~

� 𝜎*𝑆*	𝐿¡,�(𝑡)
��

~]A

� 

�]A

𝐿F,~(𝑥)

+dd𝑢�,~
� 𝑟𝑆	𝐿¡,�(𝑡)	𝐿CF,~(𝑥) −	

��

~]A

� 

�]A

dd𝑢�,~
� 𝑟	𝐿¡,�(𝑡)	𝐿F,~(𝑥)		.

��

~]A

� 

�]A

 

while for initial condition (1.1), 𝑚 = 1 and 𝑛 ∈ {1,2, … ,𝑀O} and we have  

𝑒𝑟N,O
� =dd𝑢�,~

� 	𝐿¡,�(𝑡)	𝐿F,~(𝑥) − 	𝜑(𝑥O)
��

~]A

� 

�]A

	. 

for boundary condition (1.1)  𝑛 = 𝑀O	𝑎𝑛𝑑	𝑚 ∈ {1,2, … ,𝑀N}	so that  

(3.2.2) 
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𝑒𝑟N,O
� =dd𝑢�,~

� 	𝐿¡,�(𝑡)	𝐿F,~(𝑥) −	𝑎<(𝑡)	.
��

~]A

� 

�]A

 

and boundary condition (1.1)  𝑛 = 𝑀O	𝑎𝑛𝑑	𝑚 ∈ {1,2, … ,𝑀N}	so that   

𝑒𝑟N,O
� =dd𝑢�,~

� 	𝐿¡,�(𝑡N)	𝐿F,~(𝑥) −	𝑎*(𝑥O)
��

~]A

� 

�]A

		. 

 

the qth error matrix is defined by 𝐸� =	 (𝑒𝑟N,O
� )�Q×�X. The Frobenius matrix norm of 

𝐸� matrix is defined by  

‖𝐸�‖¢* =	
1
2	dd(𝑒𝑟N,O

� )*
�X

~]A

�Q

�]A

. 

 

Next, the weight adjustment formula (1.1) given by  

 

𝑢�,~
�U< =	𝑢�,~

� + ∆	𝑢�,~
� ,  

 

For 𝑞 = 0,1,2, … , 𝑁,	with 

 

∆	𝑢�,~
� = −ρ	

𝜕‖𝐸�‖¢* 	
𝜕𝑢�,~

� = −ρ	dd𝑒𝑟N,O	
� 𝜕𝑒𝑟N,O

�

𝜕𝑢�,~
� 		 .

�X

~]A

�Q

�]A

 

 

Case1: when 𝑚 ∈ {2,3, … ,𝑀N − 1}, and  𝑛 ∈ {2,3, … ,𝑀O} we have  

 

𝜕𝑒𝑟N,O
�

𝜕𝑢�,~
� =	𝐿¡,�∝ (𝑡N)	𝐿F,~	(𝑥O) +	

1
2	𝜎

*𝑠*	𝐿¡,�(𝑡N)	𝐿CCF,~	(𝑥O) + 𝑟𝑠	𝐿¡,�(𝑡N)	𝐿CF,~	(𝑥O)

−	𝐿¡,�(𝑡N)𝐿F,~	(𝑥O)	. 

 

Case2: when 𝑚 = 1, and  𝑛 ∈ {2,3, … ,𝑀O}, we obtain  

 

(3.2.3) 

(3.2.4) 
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𝜕𝑒𝑟N,O
�

𝜕𝑢�,~
� 	= 	 𝐿¡,�	(𝑡N)	𝐿F,~	(𝑥O)	. 

 

 

Case 3: when 𝑛 = 1, and  𝑚 ∈ {2,3, … ,𝑀N}, we have  

 

𝜕𝑒𝑟N,O
�

𝜕𝑢�,~
� 	= 	 𝐿¡,�	(𝑡N)	𝐿F,~	(𝑥<)	. 

 

Case 4: when 𝑛 = 𝑀O, and  𝑚 ∈ {2,3, … ,𝑀N}, we have 

 

𝜕𝑒𝑟N,O
�

𝜕𝑢�,~
� 	= 	 𝐿¡,�	(𝑡N)	𝐿F,~	]𝑥�X^	. 

 

Hence  

 

∆	𝑢�,~
� = −ρ	dd𝑒𝑟N,O	

� ¬𝐿¡,�∝ (𝑡N)	𝐿F,~	(𝑥O) +	
1
2	𝜎

*𝑥*	𝐿¡,�(𝑡N)	𝐿CCF,~	(𝑥O)
�X

~]A

�Q

�]A

+ 𝑟𝑥	𝐿¡,�(𝑡N)	𝐿CF,~	(𝑥O) −	𝐿¡,�(𝑡N)𝐿F,~	(𝑥O)	­	 . 

 

−ρ	∑ 𝑒𝑟<,O	
� 𝐿¡,�(𝑡<)

�X
O]A 	𝐿F,~	(𝑥O) 	− ρ	 ∑ 𝑒𝑟N,<	

� 𝐿¡,�(𝑡N)
�Q
N]* 	𝐿F,~	(𝑥O) 	−

ρ	 ∑ 𝑒𝑟<,O	
� 𝐿¡,�(𝑡N)

�X
N]A 	𝐿F,~	]𝑥NX^	. 

	 

	Initial values of weight, 𝑢�,~A  for 𝑖 = 	0,1, …	,𝑀: and 𝑗 = 	0,1, 2, …	,𝑀F The upper 

limit for training sessions is N, and the neural network's learning rate is 

represented as q. 
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4. BULGULAR 

 

4.1 Numerical Results 

This section aims to validate the proposed approach by applying it to two well-known 

standard test cases. 

Example 4.1:   

Let us consider the following FOBSPDE as 

 

𝐷:D	𝑉(𝑡, 𝑥) = 	𝑉FF(𝑡, 𝑥) + (𝑘AA
B − 1)𝑉F(𝑡, 𝑥) − 𝑘A𝑉(𝑡, 𝑥), 𝑡 > 0, ∝	∈ (0,1] 

 

 

𝑉(𝑡, 0) = max(𝑒𝑥𝑝(𝑡) − 1,0). 

 

 

𝑘A =	
2𝑟
𝜎* 

 

𝑉(𝑡, 𝑥) = max(exp(𝑡) − 1,0)	𝐸D 	(−𝑘A𝑥D) 	+	max(exp(𝑡) , 0)	(1 − 𝐸D 	(−𝑘A𝑥D) . 

 

 

	𝐸D 	(−𝑘A𝑥D) = 	d
(−𝑘A𝑥D)𝑘
𝑟(𝛼	𝑘 + 1)

G

\]A

,					0 < 𝑡 < 1,			0 < 𝑥 < 1 

 

𝑉(𝑡, 0) = max(𝑒: − 1,0) . 0 + max(𝑒: , 0) . (1 − 0) 

 

= max	 (𝑒: , 0) 

 

𝑉(𝑡, 𝑙) = max(𝑒: − 1,0)	𝐸D 	(−𝑘A𝑥D) + max(𝑒: , 0) (1 − 	𝐸D 	(−𝑘A𝑥D) 

 

	𝐸D 	(−𝑘A) = 	d
(−𝑘A)\

𝑟(𝛼	𝑘 + 1)	, 𝑓𝑜𝑟	𝑙 = 1
G

\]A
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𝑉(𝑡, 𝑥) = ∑ ∑ 𝑢�~
���

~]A
� 
�]A 𝐿¡,�	(𝑡)	𝐿F,~	(𝑥) . 

 

   By using the neural network method to the example (4.1) we get. 

dd𝑢�~
�

��

~]A

� 

�]A

𝐿D¡,�	(𝑡)	𝐿F,~	(𝑥)

=dd𝑢�~
�

��

~]A

� 

�]A

𝐿¡,�	(𝑡)	
𝑑*𝑉(𝑡, 𝑥)
𝑑𝑥*

+ (𝑘A − 1) §dd𝑢�~
�

��

~]A

� 

�]A

𝐿¡,�	(𝑡)	
𝑑𝑉(𝑡, 𝑥)
𝑑𝑥 ¨

− 𝑘A 	dd𝑢�~
�

��

~]A

� 

�]A

𝐿¡,�	(𝑡)	𝐿F,~	(𝑥)	 

By calculating the derivative, we get the next Equation.  

££𝑢�~
�

��

~]A

� 

�]A

£
(−1)�U�(𝑖 + 𝑠)!

(𝑖 − 𝑠)!

�

�]A

	
𝑥�

𝑋�(𝑠!)*
	£

(−1)�U�(𝑖 + 𝑠)! 𝑡�'∝

(𝑖 + 𝑠)! 𝑠! 𝑇�Γ(𝑠 + 1−∝)

�

�]A

	

=££𝑢�~
�

��

~]A

� 

�]A

£
(−1)�U�(𝑖 + 𝑠)!

(𝑖 − 𝑠)!

�

�]A

∙
𝑡�

𝑇�(𝑠!)*
		£

(−1)�U�(𝑗 + 𝑠)!
(𝑗 + 𝑠)!

~

�]*

∙
𝑠(𝑠 − 1)𝑥�'*

𝑋�𝑠*(𝑠 − 1)*[(𝑠 − 2)!]*

+ (𝑘A − 1) ¬££𝑢�~
�

��

~]A

� 

�]A

£
(−1)�U�(𝑖 + 𝑠)!

(𝑖 − 𝑠)!

�

�]A

∙
𝑡�

𝑇�(𝑠!)*
		£

(−1)~U�(𝑗 + 𝑠)!
(𝑗 + 𝑠)!

~
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Table 4.1 Numerical results of the proposed method, when r = 0.05; sigma = 0.2 
 

α Max Error Relative L2 Error 

0.50 1.23 × 10'( 2.87 × 10'+ 

0.75 9.87 × 10'+ 2.35 × 10'+ 

0.90 7.12 × 10'+ 1.80 × 10'+ 
 

 

 

 

Figure 4.1: Exact solution of V (t, x) over the domain 0 < x < 1, 0 < t <1, and r = 

0.05; sigma = 0.2, α = 0.5. 
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Figure 4.2: Approximate Solution (V_final) of V (t, x) over the domain 0 < x < 1, 0 

< t <1, and r = 0.05; sigma = 0.2, α = 0.5. 

 

Figure 4.3: Absolute Error [Exact – V_final] of V (t, x) over the domain 0 < x < 1, 0 

< t <1, and r = 0.05; sigma = 0.2, α = 0.5. 
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Table 4.2 Numerical results of the proposed method, when r = 0.01; sigma = 0.1 

 

α Max Error Relative L2 Error 

0.50 6.50 × 10'+ 1.25 × 10'+ 

0.75 4.87 × 10'+ 9.70 × 10'´ 

0.90 3.21 × 10'+ 7.10 × 10'´ 
 

 

 

 

 

Figure 4.4: Approximate solution of V(t, x) over the domain 0 < x < 10, 0 < t < 1, 

and r = 0.01; sigma = 0.1, α = 0.5. 
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Figure 4.5: Exact Solution of V(t, x) over the domain 0 < x < 10, 0 < t < 1, and r = 

0.01; sigma = 0.1, α = 0.5. 
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5. SONUÇLAR   

 

This research has successfully developed and implemented a neural network 

strategy to tackle the fractional-order Black-Scholes differential equation. By using 

shifted Legendre polynomials as the basis functions and fine-tuning the network 

weights through gradient-based training, the method effectively addressed the non-

local features of fractional derivatives and boundary conditions. The numerical results 

showed remarkable accuracy across various fractional orders (α = 0.5, 0.75, 0.9) and 

financial parameters, with errors consistently staying below 10'(. The blend of 

spectral approximation with neural networks not only preserved the mathematical 

soundness of traditional methods but also enhanced computational flexibility, making 

it easier to handle complex financial dynamics like volatility clustering and memory 

effects. The effectiveness of this method was validated against exact solutions, 

confirming its reliability and superiority over conventional techniques. This study 

highlights the game-changing potential of neural networks in the field of fractional 

calculus applications, especially in improving quantitative finance models. 
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6. ÖNERİLER  

 The recommendations are as follows: 

1.Extension to Multi-Asset Models: It would be great to adapt this method 

for multi-dimensional fractional PDEs, especially those that deal with basket 

options or stochastic volatility models. This could really help tackle the 

complexities we see in real-world finance. 

 

2.Enhanced Neural Architectures: Exploring cutting-edge neural network 

designs, like deep learning and recurrent networks, might boost both 

convergence rates and accuracy. This is particularly important for tackling 

high-dimensional or nonlinear challenges. 

 

3.Real-World Data Integration: By validating our method with actual market 

data, we can enhance its practical relevance and gain valuable insights into how 

robust it is in real-world scenarios. 

 

4.Computational Optimization: Creating parallelized algorithms or utilizing 

GPU acceleration could significantly cut down training time, making this 

method more feasible for large-scale financial simulations. 

 

5.Comparative Studies: Conducting systematic comparisons with other 

numerical techniques, such as finite element methods or Monte Carlo 

simulations, would help clarify the strengths and weaknesses of our approach. 

 

6.Generalization to Other Fractional Models: Finally, applying this 

framework to other fractional differential equations found in fields like 

physics, biology, or engineering could really expand its interdisciplinary reach. 
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